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Abstract— We examine the problem of multiple sources trans-
mitting information to one or more receivers that require the
information from all the sources, over a network where the
network nodes perform randomized network coding. We consider
the noncoherent case, where neither the sources nor the receivers
have any knowledge of the intermediate nodes operations.

We formulate a model for this problem, inspired from block-
fading noncoherent MIMO communications. We prove, using
information theoretic tools, that coding over subspaces is suf-
ficient to achieve the capacity, and give bounds for the capacity.
We then examine the associated combinatorial problem of code
design. We extend the work by Koetter and Kschischang [3] to
code constructions for the multisource case. Qur constructions
can also be viewed as coding for the noncoherent multiple-access
finite-field channel.

I. INTRODUCTION

In network operation with network coding, a promising
technique has nodes randomly combine their incoming packets
over a finite field [1]. This approach is well suited to dynami-
cally changing or large scale networks as it avoids the need for
global synchronization. We consider a scenario where multiple
sources transmit independent information over such a network,
towards a single receiver, or towards multiple receivers all of
which request all the information from the sources.

We are interested in noncoherent communication, where
neither the sources nor the receivers have any knowledge
of the network topology or the network nodes operations.
In large dynamically changing networks, collecting network
information comes at a cost, as it consumes bandwidth that
could instead have been used for information transfer. Nonco-
herent communication allows for creating end-to-end systems
completely oblivious to the network state.

In this paper, we assume that time is slotted, and at each
time slot the sources insert in total m source packets X while a
receiver observes n packets Y. The packets Y are related to X
through a linear transformation, called transfer function, that
is unknown to both the sources and the receiver and changes
from timeslot to timeslot. This description bears close sim-
ilarities to block-fading noncoherent MIMO communication
[2]. Inspired by this, we formulate a model for noncoherent
communication over networks employing random network
coding operations, and examine it using both information
theoretic and combinatorial code design tools.

Apart from the model formulation, our contributions include
the following. We first prove that coding using subspaces as
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codewords is optimal from an information theory point of view
in the sense that such strategies are sufficient to achieve the
capacity of our channel. We then establish achievable rates for
some coding strategies. For the point to point channel we find
that for large fields and large coherence time, the optimal input
distribution is uniform over subspaces of certain dimension.

We then proceed to the associated combinatorial problem of
code design. Combinatorial codes using subspaces have been
recently proposed for the single source case by Koetter and
Kshischang [3], who use subspaces to design elegant error
and erasure correction schemes. We extend their work to the
multiple source case where a subset of the sources is active. In
our case, we need to select codebooks that allow us to convey
both the information messages as well as the identity of the
source transmitting each information message.

The paper is organized as follows. Section II describes
our model. Section III presents information theoretic results.
Section IV focuses on algebraic code constructions, and finally
Section V concludes the paper.

II. THE NONCOHERENT FINITE FIELD CHANNEL MODEL

Consider a network where nodes perform uniform at random
network coding over a finite field I,. We discuss first the case
of a single source and a single receiver. We assume slotted
time, and a “block” time-varying channel. At timeslot [, the
receiver observes

V() =aGXx{), (D

where X (1) is an m x T, G(I) is an n x m and Y () is an
n x T matrix defined over the finite field IF, (in the rest of
the paper we will omit for convenience the index [). That is,
at each time slot, the receiver receives n packets of length
T, that depend on a set of m packets of length 7' sent by
the source. The source packets are independent from time-slot
to time-slot. This block operation of the channel, where the
received packets Y depend on a different set of sent packets
X, is exactly like the standard network coding model in [1].

The block length T' can be interpreted as the coherence time
of the channel, during which the transfer matrix G remains
constant. T is finite and fixed. If 7" were arbitrarily large, we
could send a set of “training symbols” of finite length for
the receiver to learn G and then communicate using perfect
channel knowledge. In fact, this is the prevailing approach
for implementing network coding in practice [5]. Information
packets are divided in what is called generations, the number
m of source packets corresponds to the generation size, and



the training symbols are the coding vectors appended to the
information packets. As was observed in [3], this approach
leads to a rate loss that becomes pronounced as 7' decreases.

In our model, the transfer matrix G' changes independently
from timeslot to timeslot, according to the uniform at ran-
dom linear combining performed by the network intermediate
nodes. Although in general matrix G has some structure
related to the topology of the network (see for example
[6]), we will here assume that the entries of G are selected
according to the uniform distribution. We argue that this is
a reasonable choice as a starting point, especially for large
scale dynamically changing networks, because: (i) in large
networks with high probability all the elements of matrix G
will be random variables (no constant elements), and (ii) the
network topology changes introduce additional randomness in
the matrix structure. The model given in (1) along with the
modeling for G given above is clearly information stable and
hence the capacity is given by

1
C=sup =I1(X;Y),
p(z) T
where p(x) is the input distribution. For a coding strategy that
induces an input distribution p(z), the achievable rate is

1
R = ZI(X:Y).

The generalization of this model to multiple receivers is
straightforward. We thus next consider the case of multiple
sources, and the multiple access channel corresponding to (1).
This can be expressed as

N
Y1) =Y GuD)Xu(l) = Guac)Xnac(l), ()
u=1

where we have NN sources, each source u inserting m,, packets
in the network. Thus X, (1) is an m,, x T, G, (l) is an n X m,,
and Y(I) is an n x T matrix over F,. We can also collect
all G, (1) in the n x Z;V:l m,, matrix Gprac and all X, (1)
in the EuN:1 my, X T matrix Xprac(1). Each source u then
controls m,, rows of the matrix X4 (1).

Our models (1) and (2) can easily be extended to include
noise. For example, introducing erasures in (1) can be modeled
by randomly removing rows of matrix Y, or removing rows of
matrix X. These operations correspond to making all zero a
row or a column of matrix G. Additive noise can be introduced
through a matrix Z(1)

V() = GOX(1) + Z(D), 3)

that follows a given distribution. Constraining the rank of ma-
trix Z (1), for example to be smaller or equal to k, corresponds
to the error constraints of the channel model in [3]. In the rest
of this paper we will focus our attention to the noiseless case,
given in (1) and (2).

IIT. INFORMATION THEORETIC ANALYSIS

We start from the case of a single source, and then consider
the multiple access case. We assume coding over an arbitrarily
large number of timeslots, i.e., instantiations of (1) and (2).

A. Single Source

We first calculate the mutual information between X and Y
in (1). We will use (X) to denote the subspace spanned by the
rows of the matrix X, and dim(r) to denote the dimension of
a subspace 7. The number of distinct d dimensional subspaces
of a T-dimensional space IFqT is equal to

[5} U R V)
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is called the Gaussian number.
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Recall that the distribution of each entry of G is uniform
and i.i.d and also G is i.i.d over different blocks. Thus, every
row of G is independent of other rows, and conditioned on a
sent matrix X = xq, the rows of the received matrix Y are
also independent from each other. The independence of rows
of Y allows us to write

where

—ndim({x)) C {x ,
Pr(Y = yo| X = z0) = { g é%}?ir;viie.w

We can equivalently express this in terms of subspaces as

—ndim(nrg) C -
Pr(Y =yo| (X) =) = { g gﬁir\;isg.

Thus the conditional entropy can be calculated as
H(Y|(X) =m;) =ndim(r,) log, g,
and, using the notation Px (m,) = Pr((X) = . ), we get

H(Y|X> = n10g2 qzdim(ﬂ-w)PX(ﬂ-w)'

Tx

Let Py(yo) = Pr(Y = yo). To compute H(Y) =
— >y P (Y0) logy Py (yo) we can use that
Py(yo) = > I Py(ny).

Tt (Yo) Cma

We can then calculate I(X;Y) as
I(X;Y) = H(Y)-nlogyq ) dim(m,)Px(m).

T
From the above equation, we conclude that the optimal input
distribution needs to only optimize the probability distribution
of subspaces, as it is only subspace properties that appear in
the mutual information. This is very intuitive since, for G
unknown both at the transmitter and the receiver, we can only
convey the subspace that is occupied by X.

Lower Bound

We now provide a lower bound on the channel capacity that
holds for large values of the finite field size g. Consider an
input distribution that is uniform over all subspaces of a fixed
dimension k, that is,

717!
H
q

0 otherwise,

Pr((X) = 7, dim(7) = 7) = r==k,



where k is a number such that 1 < k < mm( ,T). For this
distribution, the mutual information I = I(X;Y’) becomes
min(k,n)
I = —nklogog— > Z ¥ (yo) logs ¥ (o),
B0 i (yo))=d,
where
Y(yo) = > q " Px ()

T
(y0)Crr, dim(m)=k

(2] [T 2

only depends on d,, = dim(yo). Thus for the mutual informa-
tion we can write

min(k,n)

I =—nklog,q— Z Sa,
dy=0

{ . ]qu(dy)logzw(dy),

where Sy, is the number of different n x T" matrices with rows
spanning a specific subspace 7 € IE‘qT of dimension d,,.

For ¢ very large it holds that [ Z; } g T=D(1 +

q
O(q™Y)) and Sq = ¢"4(1 + O(q~')) [7]. Then,
min(k,n)
I =—nklogyq— Z (1+ O(gL)) g~ (=) (k—dy)
dy=0

x log, ((1 +0(¢")) Q’"’“q*dﬂ*’“))

- [_nk 4 g =OE=0) [ 4 6T — k] + O(qfl)] log, ¢,

where § = min(n, k). So we have

I =[(T — k) x min(n, k) + O(¢")] log, g,

for 1 < k < min(m,T). It can be easily observed that for

fixed values of m, n, and T' > 1, there exists some ¢y such

that for ¢ > ¢o the mutual information / will be maximized

for k = A £ min(m,n, |[T/2]). Thus
Inax = [A(T = A) + O(q_l)} log, q,

and we have the following lower bound on the capacity C.

Theorem 1. For large finite field size q, the rates up to

%x [A(T - A)+O(

g ")]logyq
are achievable, where A = min(m,n, |T/2]).
For the special case where n = 1, we get that

Inax(X;Y) =(T' — k) logy g — ¢~
1—q7F
-(1-q )log2 (1qT> .

For large ¢ the mutual information behaves as

I(X;Y)~T -k, (5)

*log, k

which is maximized for £ = 1. Thus, selecting matrices X
that span one-dimensional subspaces leads to an achievable
rate of 1 —1/T which is close to the trivial upper bound of 1.

Capacity when T > n + min(m, n).

Consider the input distribution where all subspaces of the
same dimension are chosen with the same probability. That is,

-1
Pr((X) = m,dim(r) = 1) = o [ ! } NG
q
where me ™) g, = 1.
The proof of the following theorem is provided in [7].

Theorem 2. If T > n + min(m, n), there exist a number qq
such that for q > qo, the optimal input distribution is as in
(6) with amin(m,n) = 1. Then,

C = [min(m,n)(T — min(m, n)) + O(g~")] log, q.

It is worth noting that the above equation coincides with
the lower bound in Theorem 1, since under the assumptions
of Theorem 2 we have that min(m,n, |T/2]) = min(m,n).

B. Multiple Sources

For simplicity we consider the case of two sources X; and
X5. The well known rate region for the MAC channel is given
by the union of rate pairs satisfying [4]

Ry < I(XyY|Xp) = H(Y|X2) — H(Y[X1, Xa),
Ry < I(X2;Y|X:)=H(Y|X1) - HY|X1,X2),
R1+R2 § I(Xl,X27Y):H(Y)fH(Y|X1,X2),
for a given channel probability Pr(Y|X;, X5) and
P(Xl,XQ) = PI‘(Xl) PT(XQ)

For the channel described by (2), the conditional probability
of Y given X; = x; and X3 = x5, can be written as follows

Pr(Y = yo| (X1) =71, (Xo) =ma) =

_ q—ndim(m-i-ﬂz) (yo) C mq + 7o,
0 otherwise.

As can be observed from the above equation, the probability
of receiving some matrix yo only depends on the subspaces
w1 and w9 and not on the exact matrices x; and xo sent by
the sources. So we can again conclude that considering only
input distributions over subspaces is sufficient to describe the
multiple access region for our channel.

For convenience, in the following we will use the notation:

PY(yO) = Pr(Y = yo),
Px(m) £ Pr((X) =),
Py x (yo|m) £ Pr(Y = yo| (X) = 7),
Py x,x, (Wo|m1,m2) £ Pr(Y = yol (X1) = m1, (Xz) = 7).

We now write the expressions for the entropies in the rate
region inequalities. Clearly,

H(Y|(X1) = m, (X)) = m2) = ndim(m + m2) log, g,



and thus for the conditional entropy we have
H(Y|X:1,X5) =
nlog, q Z dim(my + m2) Px, (71) Px, (72).

T, T2

To compute H(Y|X;) and H(Y|X2) we will use the
probability Py |x, x,. Since

by

ma: (yo)Cmi+ma

—ndim(m+72)

Pyix,(yolm1) = Px,(m2)q ;

we can write

H(Y[(X1) =m) ==Y Pyix, (yolm1)logs (Pyx, (yo|7m1)) -

Yo

Therefore, for H(Y|X;) we have

H(Y|X) =Y H(Y|(X1) =m)Px,(m)

T

:_prl(ﬂ-l)z

Z PX2 (7T2)q—n dim(my+m2)
Yo T2t

(yo)Cm1+m2

ST P (r)g maimemtm)
7T;5
(yo) S+

x log,

A similar expression holds for H(Y|X3).
Finally, to calculate H(Y) = —>_ Py (yo)logy Py (yo),
we can use the expression

Py (yo) = >,

71,72t (yo)Cmy+me

q_n dim(ﬂ'1+‘ﬂ'2)PX1 (Wl)PXz (7T2).

Achievable Region

Again for simplicity we assume two sources. Consider the

input distribution
T -1
PI‘(<X1> = Wi,dim(m-) = 7"i) = kl q

0 otherwise,

ri = ki,

for i € {1,2} where k; are some fixed values satisfying
0 < k; < min(m;,T). Substituting this distribution in the
entropy expressions we have previously calculated, we get the
achievable region

1
R; < T [T min(n, k;) + kmax(n — k;,0) — nmin(k,T)],

1
R+ Ry < T [T — min(n, k, T)] min(n, k, T')]

1
+ T [n [min(n, k,T) — min(k, T)]],
where k = k1 + ko, 0 < k; < min(m,;,T), and i € {1,2}.
The complete proof is provided in [7].
Maximizing the above equations over different values of %y
and k5, we obtain the following theorem.

Theorem 3. For the case of two sources, an achievable region
is given by
1
Ri < = A (T = Ad],

1
R1+R2ST[A(T—A)]7

where m = my + ma, A; = min(mg,n, |[T/2]), A =
min(m,n, |T/2]), and i € {1,2}.

IV. COMBINATORIAL CODE CONSTRUCTIONS

In this section, we are interested in subspace combinatorial
codes of fixed dimension. Subspace codes use subspace as
codewords. That is, to transmit a specific value the source
inserts in the network the basis element of the corresponding
codeword subspace.

The idea of using subspace codes for network coding and
code constructions for the single source model in (1) were
proposed in [3]. In Section IV-B we consider instead the
multiple sources case as in (2). We also address in Section
IV-A the restricted access problem, where at each timeslot
an unknown subset of at most M out of the N sources is
active. Each source has 2" messages to convey. We want,
by observing n packets at the receiver, to determine which M
sources are active and what are the information messages they
convey. Our proposed constructions bring together and build
on ideas from [8], [9] and [10].

A. Construction 1

In [8] a “lifting” construction is proposed that allows to
construct a subspace code by starting from any rank metric
code with codewords m xT" matrices X and appending to each
such matrix the same m x m identity matrix. The codewords
of the resulting subspace code are the subspaces spanned by
the rows of the matrices [I  X], for all possible matrices X
in the original code.

Appending the identity matrix ensures that

(P1) all subspaces have dimension equal to m, and that
(P2) the distance properties of the rank metric code are
inherited by the subspace code [8].
Note that instead of the identity matrix we can equivalently
use any m x m full rank matrix. In the rest of this section
for simplicity we will just assume that we are not interested
in error correction capabilities, and thus X takes all possible
values. We will also restrict our attention to binary codes, and
to the symmetric case, where every source has 2™ messages
to transmit, and the receiver receives n = mM packets.

To build codes for the MAC case with M active users, we
are going to use a lifting construction similar to [8] where now
we append a different lifting matrix

Li = [Gl Al],

to create the codewords of every source. That is, in the case of
uncoded transmission, each source will transmit the subspaces
spanned by the rows of the matrices < [G; A; X] > where
X is an arbitrary matrix.



The N matrices A; serve to identify the set of active users.
Each matrix A; has m identical rows, each row repeating the
same vector a;. The N vectors a; have the property that any
M + 1 of them are linearly independent, and thus, any M of
them span a different M -dimensional subspace that uniquely
identifies the set of active sources. For the vectors a; we can
simply use the columns of a parity check matrix corresponding
to an error correction code with minimum distance M + 1.

The N matrices G; have the property that any M of
them span the mA/ dimensional space. Such matrices can be
constructed exactly as in the construction of (M, m) separable
codes described in [10]. These matrices serve the same role as
the identity matrix in the original construction, that is, ensure
that (P1) and (P2) hold. Note that the size of the lifting part
of the matrices depends on the number of active users M.

B. Construction 2

In this section we mainly extend the construction introduced
in [3], [9], and we will use the terminology therein.

Let F, be a finite field and let F = F_x be an extension of
F,. Let L(z) be a linearized polynomial as described in [9].
We will refer to the degree of its conventional g-associate as
the associate degree of L(x).

We may regard I as vector space of dimension K over IF,.
Let each A; = {agz),...,al(:)} CF,i=1,...,N, be a set
of linearly independent elements in this vector space such that
(A1) + -+ (AN) span an [ = va:l l; dimensional vectors
space over Fy, which means (4;) N(A4;) = {6)} for all ¢ # j.
Clearly we have [ < K. Let us define the space W; as follows

Wi = (4i) 8F = {(o, 8) : a € (4i) , B € F},

where subspaces W; are disjoint because (A;) are disjoint. We
will operate on the space

W = Wi+ +Wy
(A1) + -+ (AN)) @ F
= {(a,8):ae (UL, A),8€F},

which is a vector space of dimension [ + K over IF,.

Let u(® = (uéi),...,uf??i_l) € F™i denote a block of
message symbols in source 4, consisting of m; symbols over
FF or, equivalently, K'm; symbols over F,. Let F™:[z] denote
the set of linearized polynomials over I of associate degree

at most m; — 1. Let f()(z) € F™i[z], defined as

’I’ni*l

FD(z) = Z u‘gi)x[j],
=0

be the linearized polynomial with coefficients corresponding
to u(*). Finally, let each source i compute ﬁ]@ = f(i)(ay)).
Each pair (agi),ﬂJ(i)), ji=1,...
vector in W;. Since {agi), ce
set, so is {(agi),ﬁy)), e (al(:’), l(:))}, hence this set spans
an [/;-dimensional subspace V; of W;.

We know that W; are disjoint so are V; for different sources.
Next we will use the Lemma 13 stated in [3] to show that V;

,1;, may be regarded as a

al(j)} is a linearly independent

are different for two different message blocks. We denote the
map that takes the message polynomial f()(x) € F™[z] to
the linear space V; € P(W,1;) as I'y;,.

Lemma IV.1. Ifl; > m; then the map T 4, : F™ — P(W;,1;)
is injective.

Proof. Refer to [3]. O

So provided the conditions posed by Lemma IV.1 are
satisfied, we can construct our code by assigning to each
source the codebook

X = {w;(u(i)) : for all u' € Fmi} ,
where ﬂ';-(u(i)) = <{(a§l), ﬂ;l)), e (ozl(z), Z(Z))}> and ﬂ](’) =
F9 ().

From the above code construction we observe that we have
|X;| = q®™: for each user i, which results in a code with size
log,(IC]) = K Zf\il m,. The length of code is [ 4+ K and the
dimension of code at the receiver is [. So for the rate of the
code we can write

mK

Il +K)

where m = vazl m;. This rate approaches 1 assuming that
K is large with respect to [ and assuming m = [.

Rreceiver =

V. CONCLUSIONS

In this paper we formulated a new model of network com-
munication of multiple sources via a proposed noncoherent
block channel modeling. We showed the optimality of the
use of subspaces, characterized achievable rates for some
coding strategies, and discussed combinatorial code designs.
Acknowledgments: The authors would like to thank S. Saeedi
and S. Mohajer for many useful discussions.
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