
On Locating Byzantine Attackers
Mahdi Jafari Siavoshani, Christina Fragouli, Suhas Diggavi

School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Lausanne, Switzerland

Email: {mahdi.jafarisiavoshani,christina.fragouli,suhas.diggavi}@epfl.ch

Abstract — We examine networks that employ net-

work coding and are subject to Byzantine attacks.

We assume that an appropriate network error cor-

recting scheme is employed that is able to correct (up

to a certain number of) Byzantine errors. Given this

setup, we formulate the problem of locating these ma-

licious nodes that insert errors. We utilize the sub-

space properties of (randomized) network coding to

develop algorithms to locate the Byzantine attackers.

I. Introduction

Over the past few years, network error correcting codes,
that are capable of correcting errors inserted in the net-
work, have been developed [3, 6, 7, 8, 9, 10]. These
schemes are therefore capable of delivering information
despite the presence of Byzantine attacks in the network,
as long as the number of such attacks is limited. There
have been codes proposed for the detection and correc-
tion of Byzantine errors with provable rate bounds for
given error correction capabilities, along with a number
of practical approaches (see for example [6] and refer-
ences therein). These network error correcting schemes
are designed to work without knowledge of the network
topology.

In this paper we ask a new question: can we use proper-
ties of network error correcting codes as well as knowledge
of the network topology to locate the nodes that insert
the errors? This is motivated by recent work [4, 5], where
it was shown that using subspace properties of random
network coding, one can in many cases infer the network
topology. Therefore, in this paper, we ask the question
of whether we can locate the Byzantine attackers, using
properties of the network code, and the knowledge of the
topology.

Hence, in some sense, we are here interested in the dual
aspect of the network error correction problem: once a
Byzantine attack is detected, we would like to identify
which of the network node(s) has (have) launched the at-
tack. This would allow us to isolate the malicious attacker
from the network, and thus avoid the computational com-
plexity of correcting errors as well as prevent a possible
escalation of the attack.

In a network coded system, the adverserial nodes in the
network disrupt the normal operation of the information
flow by inserting erroneous packets into the network. This
can be done by inserting spurious data packets into their
outgoing edges. One way in which these erroneous pack-
ets can be prevented from disrupting information flow is

by reducing the transmission rate to below the min-cut of
the network, and using the redundancy to protect against
errors. One such technique, using subspaces to code infor-
mation was proposed in [3]. In this approach, the source
sends a basis of the subspace corresponding to the mes-
sage. In the absence of errors, the linear operations of
the intermediate nodes do not alter the sent subspace,
and hence the receiver decodes the message by collect-
ing the basis of the transmitted subspace. A malicious
attacker inserts vectors that do not belong in the trans-
mitted subspace. Therefore, if the message codebook uses
subspaces that are “far enough” apart (according to an
appropriately defined distance measure), then one can
correct these errors [3]. Note that in this technique, we
do not need any knowledge of the network topology for
the error correction mechanism. All that is needed is that
the intermediate nodes do not alter the transmitted sub-
space (which can be done if they do linear operations).

As mentioned earlier, our approach to locating adver-
saries uses the framework developed in [4], where it was
shown that under randomized network coding, the sub-
spaces at the nodes of the network give information about
the topology. Therefore, the basic premise in this paper
is to use the structure of the erroneous subspace inserted
by the adversary to reveal information about its location,
when we already know the network topology.

Other than the new problem formulation, our contri-
butions in this paper are the following. For the case of the
single adverserial node, we present simple algorithms that
allow to identify the adversary within an uncertainty of
at most two nodes. When there are multiple adversaries,
we discuss a number of algorithms, and their respective
capabilities to identify adversaries. Though these are pre-
liminary ideas, we believe this is a promising line of re-
search.

Note that for the development of the ideas in this pa-
per, we will assume that subspace network error correct-
ing codes are used. However, the approach we will de-
scribe could also apply to the more traditional network
error correction, where a coding vector is appended to
each transmitted packet, and intermediate nodes perform
randomized network coding. We note that for such net-
work error correcting the intermediate nodes in the net-
work (including the malicious ones) do not need to know
the position of the coding vectors within the packet, since
they simply need to apply the same operations to all sym-
bols in the packet. Thus corrupting a packet will corrupt



the coding vector as well. We can then apply our ap-
proach to the subspaces spanned by coding vectors.

The paper is organized as follows. We formally state
our problem and introduce notation in Section II. We
investigate basic subspace properties in Section III. We
examine the case of a single adversary in Section IV and
discuss how our observations extend in the case of multi-
ple adversaries in Section V. In Section VI, we end with a
discussion of how we plan to extend the preliminary ideas
presented in this paper.

II. Problem Formulation

Consider a network represented as a directed acyclic
graph G = (V, E). We have a source, sending information
to N receivers, and one (or more) Byzantine adversaries,
located at intermediate nodes of the network. We as-
sume complete knowledge of the network topology, and
consider the source and the receivers to be trustworthy
(authenticated) nodes, that are guaranteed not to be ad-
versaries.

We can restrict the Byzantine attack in several ways,
depending on the edges where the attack is launched, the
number of corrupted vectors inserted, and the vertices
(network nodes) that the adversary has access to. In this
paper we will distinguish between the cases where

I. there is a single Byzantine attacker located in a ver-
tex of the network, and

II. there are multiple independent attackers, located on
different vertices, that act without coordinating with
each other.

Moreover, we will consider the cases where, an attacker
located on a single vertex inserts corrupted packets on

(a) exactly one of the vertex outgoing edges,

(b) all the outgoing edges, or

(c) a subset of the outgoing edges.

We are interested in understanding under what con-
ditions we can uniquely identify the attacker’s location
(or, up to what uncertainty we can identify the attacker),
under the above scenarios.

II-A. Network Operation

In this section, we set up the notation used for the
subspace-based network coding scheme studied in this pa-
per.

The source S sends n vectors, that span a n-
dimensional subspace ΠS of space W , where W is de-
fined over a finite field Fq, with q ≫ 1. In particular, ΠS

belong to a codebook C, ΠS ∈ C, which is designed to
correct network errors [3].

Each intermediate network node i performs random-
ized network coding, that is, it sends random (uniform)
linear combinations over Fq of its collected packets to its
neighbors. We say that node i ∈ V at time t observes a
subspace Πi ⊆ Fn

q , if Πi(t) is the space spanned by the

received vectors at node i up to time t (for simplicity of
notation we omit the time index t).

Let Πi ∪ Πj refer to the common span and Πi ∩ Πj to
the intersection of subspaces Πi and Πj .

If v has In(v) incoming edges (parent nodes), then since
we use randomized network coding,

Πv = ∪
In(v)
i=1 Π(i)

v ,

where Π
(i)
v is the subspace v has received up to time t

from the parent node i.
In the absence of any erasures or adversaries in the net-

work each receiver R collects the exact space ΠS . Assume
that there is an adversary who attacks one of the nodes in
the network by combining a t-dimensional subspace ΠE

with its incoming space and sending the resulting vectors
to its children. In addition we will assume that t < n.
Then receiver R collects n ≤ m ≤ n+t innovative vectors
that span a subspace ΠR. We may write

ΠR = Hm(ΠS ∪ ΠE),

where Hm is an operator that acts on a space and selects
an m-dimensional subspace of it. The operator Hm de-
pends on the topology of the network and the code that
is used in the network. If nodes in the network perform
random network coding, Hm has some random structure.

We assume that the receiver is able to at least detect
that a Byzantine attack is under way. Moreover, we as-
sume that the receiver is able to obtain the subspace ΠS

that the source has sent. This might be, either because
the receiver has correctly decoded the sent message, or,
because after detecting the presence of an attack, has
requested the source subspace through a secure channel
from the source node.

III. Basic properties

We here investigate how the insertion of the error sub-
space ΠE affects the subspaces that the intermediate net-
work nodes observe.

We can write the received subspace at arbitrary node
i the same way as we did for the receiver R,

Πi = Hi
m(ΠS ∪ ΠE).

Then it is possible to expand Πi as follows,

Πi = Π̂Si ⊕ (Π̂Ei ⊕ Π̂i)
︸ ︷︷ ︸

Π⋆

i

= Π̂Si ⊕ Π⋆
i , (1)

where ⊕ denotes the direct sum of spaces, Π̂Si , Πi ∩
ΠS ⊆ ΠS , Π̂Ei , Πi ∩ ΠE ⊆ ΠE and Π̂i is the rest of Πi

which cannot be represented as just part of ΠS or ΠE .
We underline that in general Π⋆

i * ΠE .
If the operator Hi

m selects Πi uniformly at random,
w.h.p1 we will have

dim(Π̂Si) = m − t, dim(Π̂Ei) = m − n,

dim(Π̂i) = t − (m − n).

1With high probability.



The above results are a direct consequence of Lemma 1
in [4], and provide a lower bound for these dimensions
in the general case. Using again Lemma 1 in [4], for
two arbitrary nodes i and j, and without any further
assumptions, we have the following inequalities,

dim(Πi ∩ Πj) ≥ 2m − (n + t)

= (m − t) + (m − n),

and,

dim(Π̂Si ∩ Π̂Sj) ≥ 2(m − t) − n

= 2(m − n) + (n − 2t).

Lemma 1. In the above scenario, two arbitrary node i
and j in the network should gather m > n+t/2 innovative
vectors to have dim(Π⋆

i ∩ Π⋆
j ) > 0.

Proof. From Lemma 1 in [4] we can write

dim(Π̂Ei ∩ Π̂Ej) ≥ 2(m − n) − t.

So if we have n+ t/2 < m, the two subspaces Π⋆
i = Π̂Ei⊕

Π̂i and Π⋆
j = Π̂Ej ⊕ Π̂j have nonzero intersection.

Thus we conclude that, if an adversary introduces ΠE ,
and intermediate nodes perform randomized network cod-
ing, it is not necessary that the nodes collecting corrupted
information will collect a subspace of ΠE . Additionally,
two nodes that collect corrupted information, may only
have as common information a subspace of ΠS , unless
they collect a sufficient number of innovative packets.

IV. The case of a single adversary

In this section we focus on the case where we want to
locate a Byzantine adversary controlling a single vertex
of the network graph. We will develop methods which are
suitable for the cases where the adversary corrupts one
edge, all edges, or a subset of its out-going edges (cases
(a), (b), (c) respectively of Section II).

In Section IV-A we illustrate the limitation of using
only the information the receivers have observed along
with the knowledge of the topology, to locate the ad-
versary. This motivates requiring additional information
from the intermediate nodes related to the subspaces ob-
served by them. In Section IV-B, we show that such
additional information allows us to localize the adversary
either uniquely or within an ambiguity of at most two
nodes.

IV-A. Identification using only topological

information

In order to illustrate the ideas, we will first examine the
case where the corrupted packets are inserted on a single
edge of the network, say edge eA. This corresponds to
case (a) in Section II. The extension to cases (b) and (c)
is straightforward.

Since each receiver R knows the subspaces {Π
(i)
R } it

has received from its In(R) parents, it knows whether
what it received is corrupted or not (a subspace of ΠS or
not). Using this, we can infer some information regarding
topological properties that the edge eA should satisfy. In
particular:

• If R receives corrupted vectors from an incoming
edge e then there exists at least one path that con-
nects eA to e. Let Pe denote the set of paths2 start-
ing from the source and ending at edge e. Then eA

is part of at least one path in Pe.

• Conversely, if a receiver R does not receive cor-
rupted packets from an incoming edge e, then eA

does not form part of any path in Pe. That is,
there does not exist a path that connects eA to e.

Then, if E1 is the set of incoming edges to receivers that
bring corrupted packets, while E2 the set of incoming
edges to receivers that only bring source information, the
edge eA belongs in the set of edges EA, with

EA , {
⋂

e∈E1

Pe −
⋃

e∈E2

Pe},

where A−B denotes the set where elements in B are re-
moved from the set A. The following example illustrates
this approach.

Example 1. Consider the network in Fig. 1, and as-
sume that R1 receives corrupted packets from edge DR1

and uncorrupted packets from AR1, while R2 receives
only uncorrupted packets. Then EA = {DR1} and the

S

A

B

C

DR1 R2

Fig. 1: The source S distributes packets to receivers R1 and R2.

attacker is located on node D. �

In Example 1, we were able to exactly identify the
location of the adversary, because the set EA contained
a single edge, and node R1 is trustworthy. It is easy to
find network configurations where EA contains multiple
edges, or in fact all the network edges, and thus we can
no longer identify the attacker. The following example
illustrates one such case.

2In the following we are going to equivalently think of Pe as the
set of all edges that take part in these paths.



Example 2. Consider the line network shown in Fig. 2.
Suppose the attacker is node A. If the receiver R sees a
corrupted packet, then using just the topology, the at-
tacker could be any of the other nodes in the line net-
work. This illustrates that just the topology and receiver
information could lead to large ambiguity in the location
of the attacker. �

Therefore, Example 2 motivates the ideas examined in
Section IV-B that obtain additional information and uti-
lize the structural properties of the subspaces observed.

IV-B. Identification using information from all

network nodes

We will next discuss algorithms where a central authority,
which we will call controller, requests from all nodes in the
network to report some additional information, related
to the subspaces they have received from their parents.
The adversary could send inaccurate information to the
controller, but the other nodes report the information
accurately. Our task is to design the question to the nodes
such that we can locate the adversary, despite its possible
misdirection.

The controller may ask the nodes of the following types
of information, listed in decreasing order of complexity:

Information 1: Each node v sends all subspaces Π
(i)
v it

has received from its parents, where Πv = ∪
In(v)
i=1 Π

(i)
v .

Information 2: Each node v sends a randomly chosen

vector from each of the received subspaces Π
(i)
v (In(v)

vectors in total).

Information 3: Each node v sends one randomly chosen
vector from its subspace Πv.

Information 2 and 3 is motivated by the following well-
known observation [2, 4]: let Π1 and Π2 be two subspaces
of Fn

q , and assume that we randomly select a vector y
from Π1. Then, for q ≫ 1, y ∈ Π2 if and only if Π1 ⊆ Π2.
Thus, a randomly selected vector from Πv (Information
3) allows to check whether Πv ⊆ ΠS or not.

In fact, we will show in this section that for a single
adversary it is sufficient to use3 Information 2, and clas-
sify the edges of the network by simply testing whether
the information flowing through each edge is a subspace
of ΠS or not (i.e., is corrupted or not).

IV-B.1. The line network

To build the intuition behind our approach, we first ex-
amine the case of the line network, depicted in Fig. 2,
that corresponds to a single path connecting the source
to the receiver. We saw in Example 2, that just topo-
logical information was insufficient to reduce ambiguity
of the attacker’s location. For the line network, cases
(a), (b), (c) in Section II coincide.

Assume now that the controller asks for Information
1, i.e., all nodes to report their collected subspaces to the

3Using Information 2 or 3 these statements are made w.h.p, i.e.,
the probability goes to one as field size q → ∞.

S A B C D R

Fig. 2: The source S sends information to receiver R over a line
network.

controller. The adversary has two courses of action: it can
either correctly report the subspace it received from its
parent node, or lie, and claim that it received a corrupted
subspace from its parent. We do not know which of the
two approaches the adversary has selected. However, in
both cases, we can divide the network edges into two
sets, the set of edges through which is reported to flow
correct information, and the set of edges through which
is reported to flow corrupted information.

For example, if the adversary is node C in Fig. 2, the
sets corresponding to the possible adversary actions are
depicted in Fig. 3(i) and 3(ii) respectively. It is clear that
the adversary is one of the two nodes connecting the edge
on the border of the sets, that is, in the set of vertices
{C, D} for the case in Fig. 3(i), and in the set {B, C} for
the case in Fig. 3(ii). In particular, the adversary is one
of the two adjoining nodes, of the first ancestral reported
corrupted edge.

(i) S A B C D R

(ii) S A B C D R

Fig. 3: Case (i): edge partition if the adversary node C reports
the truth, and Case (ii): edge partition if the adversary node C lies.
Edges bringing corrupted information are depicted as dashed.

Note that we can divide the edges in these two sets
simply using Information 2 or 3 (these coincide for the
line network) since it is sufficient to check whether each
edge is corrupted.

Also note that networks where all nodes have out-
degree one and arbitrary in-degree, can be treated in ex-
actly the same way as the line network. Indeed, the iden-
tification in such networks can be, without loss of gener-
ality, decomposed in identification along single paths.

IV-B.2. General networks

Consider a directed acyclic graph, and assume that we
impose a partial order on the edges of the graph, such
that e1 > e2 if e1 is an ancestor edge of e2 (i.e., there
exists a path from e1 to e2).

Following a similar approach to Section IV-B-1, and
using Information 2, we divide the edges of the network
into two sets: the set of edges EC through which are
reported to flow corrupted subspaces, and the remaining



edges ES through which the source information flows.
Note that all the outgoing edges from the source belong
in ES , while the receiver observes at least one edge in EC .

Consider case (a), where the adversary corrupts a sin-
gle edge. Clearly, since there exists a single adversary,
EC forms a connected subgraph. Let eA be highest order
edge in this graph, i.e., eA > e for all e ∈ EC . Then,
similarly to the case of the line network, the adversary is
one of the two nodes adjacent to this edge. We can make
similar arguments for cases (b) and (c). This leads to the
following lemma.

Lemma 2. Using Information 1 we can narrow the lo-
cation of the adversary up to a set of at most two nodes.
With Information 2, the same result holds w.h.p.

v1

v2

u

wt

eA

e1

e2e3

Fig. 4: Edge eA and neighboring edges-nodes.

In fact, in some cases, we are able to uniquely iden-
tify the malicious attacker, as described by the following
lemma.

Lemma 3. If eA connects vertex v1 to vertex v2, and if
vertices v1 and v2 have outdegree greater or equal to two,
then we can uniquely identify4 the attacker in cases (a)
and (b) of Section II.

Proof. The proof is based on the fact that only a sin-
gle node can lie. Thus we know that every other node,
apart from v1 or v2, is trustworthy. Let e1, e2 and e3 be
outgoing edges of vertex v1 and v2 as depicted in Fig. 4.

• Case (a) (the adversary corrupts a single edge): If
e2 and e3 are corrupted, the adversary can be only
located on vertex v1, while if only one of them is
corrupted, the adversary is located on v2.

• Case (b) (the adversary corrupts all its outgoing
edges): If e1 is corrupted, the adversary is located
on vertex v1, and otherwise on v2.

V. The case of multiple adversaries

In the case of a single adversary, it was sufficient to divide
the set of edges into two sets, ES and EC , as described

4Again, this occurs w.h.p. for Information 2 and 3.

in the previous section. In the presence of multiple ad-
versaries, this may no longer be sufficient. An additional
dimension is that realistically, we may not know the ex-
act number of adversaries present. In the following, we
discuss a number of algorithms, that offer more or less
identifiability guarantees.

V-A. Identification using topological

information

The approach in Section IV-A can be directly extended
in the case of multiple adversaries, but again, offers no
identifiability guarantees.

Example 3. Consider again the network in Fig. 1, and
assume that R1 receives corrupted packets only from edge
DR1 while R2 receives corrupted packets only from edge
DR2. Then EA = {AD, CD, DR1, DR2} and (depending
on our assumptions) we may have,

− a single adversary located on node D,

− two adversaries, located on nodes A and C,

− two adversaries, located on nodes A and D, or nodes
C and D, or

− three adversaries, located on nodes A, C, and D.

V-B. Identification using Information 2

Similarly to Section IV-B, we can divide the set of edges
into two sets ES and EC , depending on whether the infor-
mation flowing through each edge belongs in ΠS or not.
Depending on the network topology, we may be able to
uniquely identify the location of the attackers. However,
this approach, although it guarantees to find at least one
of the attackers (within an uncertainty of at most two
nodes), does not necessarily find all the attackers, even if
we know their exact number.

Intuitively, this is because an attacker might be “in the
shadow” of another attacker, meaning that, it may cor-
rupt only already corrupted vectors and thus not incur a
detectable effect. More precisely, we say that node B is in
the shadow of node A, if there exists a path that connects
every incoming edge of B to a corrupted outgoing edge of
A. The following example illustrates these points.

Example 4. For the example in Fig. 1, assume that
each attacker corrupts all its outgoing edges, and consider
the following two situations:

1. Assume that nodes A and C are attackers. If
A reports truthfully while C lies we get EC =
{AD, AR1, DR1, DR2, BC, CR2, CD}, which al-
lows to identify the attackers.

2. Assume that nodes B and D are attack-
ers. Then we say that node D is in the
shadow of node B, as it corrupts only al-
ready packets corrupted by B. Indeed, if EC =
{SB, BA, BC, AD, AR1, DR1, DR2, BC, CR2, CD},



knowing that the source is trustworthy, we can
infer that node B is an attacker. However, any of
the nodes A, C, and D can equally probably be the
second attacker. All these nodes are in the shadow
of node D. �

V-C. Identification using subset relationships

For each node i ∈ V , let P (i) = {u1, · · · , upi
} denote the

set of parents of i. We are going to treat P (i) as a super
node, and use the notation ΠP (i) = ∪pi

l=1Πul
for the union

of the subspaces of all nodes in P (i). Also recall that Π
(i)
j

denotes the subspace received by node j from node i.
Our last algorithm checks, for every node i, whether

Π
(i)
j

?
⊆ ΠP (i) for node j s.t. eij ∈ E.

If this relationship is satisfied, we know that node i is not
an adversary. If the relationship is not satisfied, that is

Π
(i)
j * ΠP (i) for at least one of the children of i, we know

that maybe node i is an adversary. For sure we know that

Π
(A)
j * ΠP (A) for node j s.t. eAj ∈ E,

but depending on the space that the adversary reports,
the above relation may not be satisfied for other nodes.

If the adversary pretends that it is a trustworthy node
(just declares its received subspace from the parents) the
above relation also fails for the children of A who receive
corrupted subspaces. On the other hand, if the adversary
tells the truth and declares its whole subspace, we have

Π
(i)
A * ΠP (i) for all parents i of A.

Thus the ambiguity set we have identified includes the
adversary and its parents or children depending on the
adversary’s report.

Now it is possible to use the topological information
to make the ambiguity set smaller. We know that the
set contains the adversary and either its parent or its
children. So the potential adversaries are nodes that are
parents or children of all other nodes in the set. If there
exists only one such node in the set we can identify the
location of the adversary uniquely.

Repeating this procedure for every node in the net-
work, we can identify sets of potential adversaries. This
procedure allows to identify adversaries, even if one is in
the shadow of another, and even if we do not know their
exact number, provided they are “far enough” in the net-
work to be distinguishable. More precisely, we have the
following lemma, where distance refers to the length of
the shortest path connecting two nodes.

Lemma 4. If the pairwise distance between adversaries
is greater than two, it is possible to find the exact num-
ber as well as the location of the attackers (within the
described uncertainty of parent-children sets), using the
subset method.

Proof. We know that depending on the adversaries action
there exists ambiguity in finding their exact location. In
fact in the worst case, the uncertainty is within a set of
nodes including the adversary, its parents and its chil-
dren. So if the distance between adversaries is greater
than two, the “uncertainty” sets do not overlap. In this
case we can easily distinguish between different adver-
saries.

VI. Conclusions and Discussion

Given a network subject to Byzantine attacks, we formu-
lated and examined the problem of locating the adver-
saries. We showed that in the case of a single adversary,
there exist simple algorithms that allow to identify the
adversary within an uncertainty of two nodes. For the
case of multiple adversaries, we discussed algorithms and
conditions under which we can guarantee identifiability.

Our future work includes investigating the best one
could do given constraints of resources and power of the
adversaries. We are interested in particular in developing
decentralized algorithms, where nodes are willing to coop-
erate exchange messages or certificates with their neigh-
bors and identify the Byzantine attacker in a distributed
manner without the use of a centralizer controller.

References

[1] R. Ahlswede, N. Cai, S-Y. R. Li, and R. W. Yeung, “Net-
work information flow”, IEEE Trans. Inform. Theory, vol. 46,
pp. 1204–1216, July 2000.

[2] T. Ho, R. Kötter, M. Médard, M. Effros, J. Shi, and D. Karger,
“A random linear network coding approach to multicast”, IEEE
Trans. Imform. Theory, vol. 52, pp. 4413-4430, October 2006.

[3] R. Kötter and F. Kschischang, “Coding for errors and erasures
in random network coding”, ISIT, France, June, 2007.

[4] M. Jafarisiavoshani, C. Fragouli, and S. N. Diggavi, “Subspace
properties of randomized network coding”, ITW, pp 17–21, Nor-
way, July 2007.

[5] M. Jafarisiavoshani, C. Fragouli, S. N. Diggavi, and C. Gkant-
sidis “Bottleneck discovery and overlay management in network
coded peer-to-peer systems”, ACM SIGCOMM Workshop on
Internet Network Management (INM), Japan, August 2007.

[6] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and
M. Medard, “Resilient network coding in the presence of byzan-
tine adversaries”, Infocom, pp. 616–624, 2007.

[7] T. Ho, B. Leong, R. Kötter, M. Médard, M. Effros, and
D. Karger, “Byzantine modification detection in multicast net-
works using randomized network coding”, ISIT, June 2004.

[8] R. W. Yeung and N. Cai, “Network error correction, i: basic
concepts and upper bounds”, Commun. Inf. Syst., vol. 6, pp.
19–35, 2006.

[9] N. Cai and R. W. Yeung, “Network error correction, ii: lower
bounds”, Commun. Inf. Syst., vol. 6, pp. 37–54, 2006.

[10] Z. Zhang, “Network error correction coding in packetized net-
works”, ITW, October 2006.


