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ABSTRACT
In several wireless applications multiple sources transmit in-
formation to one or more receivers, many times over un-
known topologies. This is especially so in mobile networks
where learning the topology may have prohibitive complex-
ity. Network coding techniques allow to achieve the min-cut
capacity even when the topology is unknown. Our contribu-
tion in this paper is to develop algebraic code constructions
for multiple sources network coding.

1. INTRODUCTION
In network operation with network coding, a promising

technique has nodes randomly combine their incoming pack-
ets over a finite field [1, 2]. This approach is well suited to
dynamically changing or large scale networks as it avoids
the need for global synchronization. We consider a scenario
where multiple sources transmit independent information
over such a network, towards a single receiver, or towards
multiple receivers all of which request all the information
from the sources.

We consider a network where neither the sources nor the
receiver have knowledge of the network topology or of the
linear coding operations the network nodes perform. In
practical networks, where such deterministic knowledge is
not sustainable, the most popular approach is to append
coding vectors at the headers of the packets to keep track of
the linear combinations of the source packets they contain.

Recently, algebraic subspace coding constructions have
been proposed as a method that allows to achieve higher
information rates by dispensing of the need for the coding
vector overheads [3]. We extend the work of Koetter and
Kschischang [3, 4] for multisource code construction.

In this paper, we assume that time is slotted, and at each
time slot the ith source inserts in total mi source packets
denoted by rows of matrix Xi while a receiver observes n
packets represented by rows of matrix Y . The packets Y
are related to Xi through a linear transformation, called
transfer function, that is unknown to both the sources and
the receiver and changes from time slot to time slot. We use
the communication model introduced in [5] as our starting
point and then based on that model introduce a new channel
where the input and output alphabets are subspaces.

We then proceed to the associated problem of code design
over the subspace channel. Designing codes using subspaces
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have been recently proposed for the single source case by
Koetter and Kshischang [3], who use subspaces to design
elegant error and erasure correction schemes. We extend
their work to the multiple source case.

1.1 Notation
We here introduce our notation for the following sections.

In this paper we work with matrices and subspaces defined
over some finite field Fq. We use 0n and In to denote the
n× n zero and identity matrices respectively. For a matrix
X we use 〈X〉 to represent its row span. Let us consider
the T -dimensional vector space FTq . Let Gr(T, d)q denote all

d-dimensional subspaces of FTq which in fact is a Grassman-
nian. Note that the cardinality of Gr(T, d)q is the Gaussian
number, namely1

G(T, d)q , |Gr(T, d)q|
.
= qd(T−d). (1)

We use S(T ) , ∪Ti=0Gr(T, i)q to denote the set of all sub-
spaces of FTq .

We use operator “v” to denote the subspace relationship.
We write π̂ v π if π̂ is a subspace of π. The sum of two
subspaces π1, π2 ∈ FTq is π1 + π2 = {u + v : u ∈ π1, v ∈
π2}. Equivalently, π1 + π2 is the smallest subspace of FTq
containing both π1 and π2. To compare the distance between
two subspaces π1, π2 ∈ S(T ) we will use the following metric
(see [3])

dS(π1, π2) , dim(π1 + π2)− dim(π1 ∩ π2).

2. MAC CHANNEL MODEL
Consider a network where nodes perform uniform at ran-

dom network coding over a finite field Fq. We assume slotted
time, and a “block” time-varying channel. At time slot t, the
receiver observes

Y (t) =
sX
i=1

Gi(t)Xi(t) +Ge(t)Xe(t), (2)

where we have s sources, each source i inserting mi ∈ FTq
packets (vectors), corresponding to the rows of matrices
Xi(t), in the network. We have also one or more adver-
saries injecting corrupted information in the network which
is represented by the rows of the matrix Xe(t). Thus Xi(t)
is an mi × T , Gi(t) is an n×mi, Xe(t) is an e× T , Ge(t) is
an n× e, and Y (t) is an n× T matrix over Fq. We assume

1By f
.
= g we mean limq→∞ f = limq→∞ g.



non-coherent communication where neither sources nor re-
ceiver have any knowledge about the network topology and
transfer matrices.

Due to the linear structure of the channel model (2), we
observe that the row span of the received packets is a sub-
space of the union of the row span of the transmitted pack-
ets. This fact leads us to conclude that considering the sub-
spaces spanned by the rows of inputs and output matrices
should be sufficient as far as the receiver is concerned.

Let us define the “erasure operator” Eρ that operates on
a subspace π of FTq and erases at most ρ dimensions from
π according to some statistics2. Using this operator, we
define the following multiple access channel which inherently
describes (2).

Definition 1. The channel CMAC : [S(T )]s → S(T ), is
a multiple access channel described by

πy =
h
Eρ1(π(1)) + · · ·+ Eρs(π(s))

i
⊕ πe, (3)

where π(i) is the subspace sent by ith source and πe is an
error space. Here ρi denotes the maximum number of era-
sures induced by the channel on the subspaces sent by the ith
source. We also define de , dim(πe) to be dimension of the
inserted error space.

To find the achievable rate region for the channels de-
scribed by (2) or (3), we need to assume a probability model
for the transfer matrices and the erasure operators. For ex-
ample, we can assume that the transfer matrices Gi, i =
1, . . . , s, and Ge change (not necessarily independently) from
time slot to time slot, according to the uniform at ran-
dom linear combining performed by the network intermedi-
ate nodes. Although in general transfer matrices have some
structure related to the topology of the network (see for ex-
ample [6]) this is a simple enough model to be tractable,
and captures well large networks where sufficient informa-
tion mixing occurs. For this channel model and point-to-
point communication the capacity has been calculated in [5,
7]. In [8] the capacity is calculated for a similar model that
imposes the additional restriction on the transfer matrices
to be full rank. In this paper we concentrate on the algebraic
code design problem in [S(T )]s, that is independent of the
probability structure of the transfer matrices.. That is, our
codes have block length one and the problem we consider is a
combinatorial problem rather than information theoretical.

3. CODING FOR MAC

3.1 Coding Problem
In this section we consider multiple access communication

over the channel described by (3). To each source i a code-
book Ci ⊆ S(T ) is assigned. The rate of each codebook is

defined as Ri , log2 |Ci| and for the minimum distance we
define

δS(Ci) , min
π,π′∈Ci:π 6=π′

dS(π, π′).

First, let us consider the special case where there are no
errors and erasures in the network, which means we can
rewrite (3) as follows

πR = π(1) + · · ·+ π(s), π(i) ∈ Ci.
2Note that there is slight difference between the definition
of erasure operator here and in [3].

Definition 2. (Identifiable Code) An identifiable code

is a set of s codebooks Ci ⊆ S(T ) such that we have π(1) +

· · · + π(s) 6= π̂(1) + · · · + π̂(s) when π(i) 6= π̂(i) for at least
one source i. Note that π(i) and π̂(i) are the subspaces sent
by source i.

For the general case where there are errors in the net-
work, not only the codebooks have to be identifiable, but
also some distance between codewords is required to en-
able the receiver to decode the sent messages. Let us define
the union subspace code C as all possible combinations of
π(1) + · · ·+ π(s), namely

C ,
n
π(1) + · · ·+ π(s)| π(i) ∈ Ci, i = 1, . . . , s

o
. (4)

The following theorem relates the minimum distance of code
C to the error and erasure correction capability of C under
minimum distance decoding.

Theorem 1. Assume an identifiable code {Ci} is used for

transmission over the channel in (3). Let π(i) ∈ Ci, i =
1, . . . , s, be transmitted and πR be received. If

2

 
de +

sX
i=1

ρi

!
< δS(C), (5)

then a minimum distance decoder will enable the receiver to
recover the transmitted subspaces for each source.

Proof. Let us define πS = π(1) + · · · + π(s) and π̂(i) =
Eρi(π(i)) for i = 1, . . . , s. So we can write

dS(πR, πS)
(a)

≤dS(π(1) + · · ·+ π(s), π̂(1) + · · ·+ π̂(s))

+ dS(πR, π̂
(1) + · · ·+ π̂(s))

(b)

≤
sX
i=1

dS(π(i), π̂(i)) + dS(πR, π̂
(1) + · · ·+ π̂(s))

≤
sX
i=1

ρi + de,

where (a) follows from the triangle inequality and (b) follows
from Lemma 1. For another codeword π′S 6= πS in C we have

δS(C) ≤ dS(πS , π
′
S) ≤ dS(πS , πR) + dS(πR, π

′
S).

Combining these two inequalities we can write

dS(πR, π
′
S) ≥ δS(C)− dS(πS , πR) ≥ δS(C)−

 
de +

sX
i=1

ρi

!
.

So if the inequality (5) holds, then dS(πR, π
′
S) > dS(πR, πS)

and a minimum distance decoder would choose πR. Because
{Ci} is an identifiable code, the receiver is able to decompose
πR uniquely and find the original messages.

Lemma 1. Suppose πi, i = 1, . . . , s, are subspaces of some
vector space W . Assume π̂i v πi for i = 1, . . . , s. Then we
have

dS(π1 + · · ·+ πs, π̂1 + · · ·+ π̂s) ≤
sX
i=1

dS(πi, π̂i).

The following lemma relates the minimum distance of the
codebook C to the minimum distance of each codebook Ci.



Lemma 2. For the minimum distance of code C we have

δS(C) ≤ min
i: 1≤i≤s

δS(Ci). (6)

Proof. Consider two subspaces π, π̂ ∈ C where π =
π(1)+· · ·+π(s) and π̂ = π̂(1)+· · ·+π̂(s) such that π(j) = π̂(j)

for all sources except source i. Then take the minimum value
over i.

3.2 Code Construction
We here give our code construction which is a simplified

version of the codes introduced in [5]. Let us assign to ith
user the codebook Ci which is constructed as follows

Ci = {πi| πi = 〈Hi〉}, (7)

where Hi is a di × T matrix of the form

Hi =
ˆ
0d1 | · · · |0di−1 |Idi |0di+1 | · · · |0ds |mi

˜
, (8)

and we define d ,
Ps
i=1 di. In the definition of Hi we choose

mi ∈ CMi , where CMi is a matrix code over Fdi×(T−d)
q . Let

δR(CMi) be the minimum distance of CMi calculated using
rank metric which is defined as follows

δR(CMi) , min
x,y∈CMi

, x6=y
Rank(x− y).

The codes CMi are called rank metric codes and were largely
developed by Gabidulin [9]. However, the rank metric was
first used in coding theory by Delsarte [10].

Obviously, the above construction results in an identifiable
code since for every πi ∈ Ci and πj ∈ Cj we have dim(πi ∩
πj) = 0. The following lemma relates the minimum distance
of subspace code Ci to the minimum distance of CMi .

Lemma 3. If a subspace code Ci is constructed from a
rank metric code CMi using (7) and (8), for their minimum
distance we have

δ(Ci) = 2δR(CMi).

Proof. See Proposition 4 in [4].

Also, the minimum distance of the union code C defined
by (4) satisfies Lemma 2 with equality as it is shown in the
following theorem.

Theorem 2. For the minimum distance of the union code
C of codes Ci constructed as above, we have

δS(C) = min
i: 1≤i≤s

δS(Ci) = 2× min
i: 1≤i≤s

δR(CMi).

Proof. Let π, π̂ ∈ C. From the code construction, we
know that π and π̂ have the following structure

π =

*264 I

m1

...
ms

375+ , π̂ =

*264 I

m̂1

...
m̂s

375+ .
Now let us assume π and π̂ are two subspaces that achieve
the minimum distance of the code C. Using the definition of

minimum distance, we have

δS(C) = dS(π, π̂) = 2 dim(π + π̂)− dim(π)− dim(π̂)

= 2Rank

264 m̂1 −m1

...
m̂s −ms

375
≥ 2× min

i: 1≤i≤s
δR(CMi)

= min
i: 1≤i≤s

δS(Ci).

From the previous equation and by Lemma 2 we are done.

Example 1. Error free case: For the special case where
there are no errors and erasures in the network, for each
source i we can assign all possible di × (T − d) matrices to
CMi . For the rate of each user we have Ri = di(T−d) log2 q,
where d =

Ps
i=1 di. For their sum rate we can also writePs

i=1Ri = d(T − d) log2 q. �

Preliminary results indicate that these code constructions
for the channel (2), if (i) there are no errors in the network
(Xe(t) = 0), (ii) the elements of the transfer matrices Gi(t)
are chosen independently and uniformly at random from Fq
and (iii) Gi(t) are independent from block to block, then
the subspace codes introduced in Example 1 can achieve the
rate region of (2). Verifying this is part of our future work.
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