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Abstract—Systems that employ network coding for content dis-
tribution convey to the receivers linear combinations of the source
packets. If we assume randomized network coding, during this
process, the network nodes collect random subspaces of the space
spanned by the source packets. We establish several fundamental
properties of the random subspaces induced in such a system and
show that these subspaces implicitly carry topological information
about the network and its state that can be passively collected
and inferred. We leverage this information toward a number
of applications that are interesting in their own right, such as
topology inference, bottleneck discovery in peer-to-peer systems,
and locating Byzantine attackers. We thus argue that random-
ized network coding, apart from its better known properties for
improving information delivery rate, can additionally facilitate
network management and control.

Index Terms—Byzantine attack, network coding, random sub-
spaces, randomized network coding, subspace coding, topology in-
ference, topology management.

I. INTRODUCTION

R ANDOMIZED network coding offers a promising tech-
nique for content distribution systems. In randomized

network coding, each node in the network combines its in-
coming packets randomly and sends them to its neighbors [1],
[2]. This is the approach adopted by most practical applications
today. For example, Avalanche, the first implementation of a
peer-to-peer (P2P) system that uses network coding, adopts
such a randomized operation [3], [4]. In ad-hoc wireless and
sensor networks as well, most proposed protocols employing
network coding again opt for randomized network operation
(see [9] and references therein).
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The reason for the popularity of randomized network coding
is because it facilitates a very simple and flexible network op-
eration without need of synchronization among network nodes,
that is well suited to packet networks. To every packet, a coding
vector is appended that determines how the packet is expressed
with respect to the original data packets produced at the source
node. When intermediate nodes combine packets, the coding
vector keeps track of the linear combinations contained in a par-
ticular packet. A receiver, which collects enough packets, uses
the coding vectors to determine the set of linear equations it
needs to solve in order to recover the original data packets.

Our contributions start with the observation that coding vec-
tors implicitly carry information about the network structure
as well as its state.1 Such vectors belong to appropriately de-
fined vector spaces, and we are interested in fundamental prop-
erties of these (finite-field) vector spaces. In particular, since
we are investigating properties induced by randomized network
coding, we need to characterize random subspaces of the afore-
mentioned vector spaces. These properties of random subspaces
over finite fields might be of independent interest. We aim to
show, using these properties, that observing the coding vec-
tors, we can passively collect structural and state information
about a network. We can leverage this information toward sev-
eral applications that are interesting in their own merit, such as
topology inference, network tomography, and network manage-
ment (we do not claim here the design of practical protocols
that use these properties). However, we show that randomized
network coding, apart from its better known properties for fa-
cilitating information delivery, can provide us with information
about the network itself.

To support this claim, we start by studying the problem of pas-
sive topology inference in a content distribution system where
intermediate nodes perform randomized network coding. We
show that the subspaces nodes collect during the dissemination
process have a dependence with each other which is inherited
from the network structure. Using this dependence, we describe
the conditions that let us perfectly reconstruct the topology of a
network, if subspaces of all nodes at some time instant are avail-
able.

We then investigate a reverse or dual problem of topology in-
ference, which is, finding the location of Byzantine attackers.
In a network-coded system, the adversarial nodes in the net-
work can disrupt the normal operation of information flow by
inserting erroneous packets into the network. We use the depen-
dence between subspaces gathered by network nodes and the

1By state, we refer to link or node failures, congestion in some part of the
network, etc.
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topology of the network to extract information about the loca-
tion of attackers. We propose several methods, compare them,
and investigate the conditions that allow us to find the location
of attackers up to a small uncertainty.

Finally, we observe that the received subspaces, even at one
specific node, reveal some information about the network, such
as the existence of bottlenecks or congestion. We consider P2P
networks for content distribution that use randomized network
coding techniques. It is known that the performance of such
P2P networks depends critically on the good connectivity of
the overlay topology. Building on our observation, we propose
algorithms for topology management to avoid bottlenecks
and clustering in network-coded P2P systems. The proposed
approach is decentralized, inherently adapts to the network
topology, and reduces substantially the number of topology
rewirings that are necessary to maintain a well connected
overlay; moreover, it is integrated in the normal content distri-
bution.

This paper is organized as follows. We start with the nota-
tion and problem modeling in Section II. We investigate the
properties of vector spaces in a system that employs random-
ized network coding in Section III and these properties give the
framework to explore applications in Sections IV–VI. Finally,
we conclude the paper with a discussion in Section VII. Shorter
versions of these results have also appeared in [10]–[12].

A. Related Work

Network coding started by the work of Ahlswede et al. [13]
who showed that a source can multicast information at a rate
approaching the smallest min-cut between the source and any
receiver if the middle nodes in the network combine the in-
formation packets. Li et al. [14] showed that linear network
coding with finite field size is sufficient for multicast. Koetter
and Medard [15] presented an algebraic framework for linear
network coding.

Randomized network coding was proposed by Ho et al. [1],
[16] where they showed that randomly choosing the network
code leads to a valid solution for a multicast problem with high
probability if the field size is large. It was later applied by Chou
et al. [2] to demonstrate the practical aspects of random linear
network coding. Gkantsidis et al. [3], [4] implemented a prac-
tical file sharing system based on this idea. Several other works
have also adopted randomized network coding for content dis-
tribution (see, for example, [5]–[7]).

Network error correcting codes, that are capable of correcting
errors inserted in the network, have been developed during the
last few years. For example, see the work of Koetter and Kschis-
chang [17], Jaggi et al. [18], Ho et al. [19], Yeung and col-
leagues [20], [21], Zhang [22], and Silva and Kschischang [23].
These schemes are capable of delivering information despite the
presence of Byzantine attacks in the network or nodes malfunc-
tion, as long as the amount of undesired information is limited.
These network error correcting schemes allow us to correct ma-
licious packet corruption up to certain rate. In contrast, we use
network coding to identify malicious nodes in our work. Re-
cently, and following our work [12], additional approaches have
been proposed in the literature, some building on our results
[24].

Overlay topology monitoring and management that do not
employ network coding has been an intensively studied research
topic (see, for example, [25]). However, in the context of net-
work coding, it is a new area of research. Fragouli et al. [26],
[27] took advantage of network coding capabilities for active
link loss network monitoring where the focus was on link loss
rate inference. Passive inference of link loss rates has also been
proposed by Ho et al. [28]. In a subsequent work of ours, Sharma
et al. [29] study passive topology estimation for the upstream
nodes of every network node. This work is based on the assump-
tion that the local coding vectors for each node in the network
are fixed, generated in advance, and known by all other nodes
in the network, unlike our work that builds on randomized op-
eration. The idea of passive inference of topological properties
from subspaces that are build over time, as far as we know, is a
novel contribution of this study.

II. MODELS: CODING AND NETWORK OPERATION

A simple observation motivates much of the work presented
in this paper: the subspaces gathered by the network nodes
during information dissemination with randomized network
coding are not completely random, but have some relationship,
and this relationship conveys information about the network
topology as well as its state. We will thus investigate properties
of the collected subspaces and show how we can use them for
diverse applications.

Different properties of the subspaces are relevant to each par-
ticular application, and therefore, we will develop a framework
for investigating these properties. This will also involve some
understanding of modeling the problem to fit the requirements
of an application and then developing subspace properties rele-
vant to that model.

A. Notation

Let be a power of a prime. In this paper, all vectors
and matrices have elements in a finite field . We use to
denote the set of all matrices over , and to denote
the set of all row vectors of length . The set forms an -di-
mensional vector space over the field . Note that all vectors
are row vectors unless otherwise stated. Bold lower-case letters,
e.g., , are used for vectors and bold capital letters, e.g., , are
used to denote matrices.

For a set of vectors , we denote their linear span
by . For a matrix , is the subspace spanned
by the rows of . We then have .

We denote subspaces of a vector space by and sometimes
also by . In this paper, we work on a vector space of di-
mension defined over a finite field . For two subspaces

, we will denote their intersection by
and their joint span by where

is the smallest subspace that contains both and . It is well
known that
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We also use the following metric to measure the distance be-
tween two subspaces:

(1)

This metric was also introduced in [17], where it was used to
design error correction codes.

In addition to the metric defined previously, in some
cases, we will also need a measure that compares how a set
of subspaces differs from another set of subspaces. For this,
we will use the average pair-wise distance defined as follows:

(2)

It should be noted that the aforementioned relation does not de-
fine a metric for the set of subspaces because the self distance
of a set with itself is not zero. However, satisfies the
triangle inequality.

In this paper, we will be interested in investigating the re-
lationship of the collected subspaces at neighboring network
nodes. We consider a network represented as a directed acyclic
graph , with nodes and edges. For
an arbitrary edge , we denote
and . For an arbitrary node , we denote

the set of incoming edges to and the set of
outgoing edges from . If a node has parents ,
we denote with the set of parents of .
We use to denote the set of all ancestors of at dis-
tance from in the network (we say that two nodes and
are at distance if there exists a path of length exactly that
connects them). We denote with the subspace node

receives from parent at exactly time , and with
the whole subspace (from all parents) that node receives at
time , that is . We also denote with

the subspace node has received from parent up
to time , i.e., . Then the
subspace that the node has at time can be expressed as

. For a set of nodes ,
we define .

Finally, we use the big notation which is defined as follows.
Let and be two functions defined on some subset
of the real numbers. We write if and only if
there exists a positive real number and a real number such
that for all . During the rest of the
paper, we use the big notation to compare functions of the
field size , unless otherwise stated. For example, we will use

to imply that the value of goes to zero as
for .

B. Network Operation

We assume that there is an information source located on a
node that has a set of packets (messages) ,

, to distribute to a set of receivers, where each packet is
a sequence of symbols over the finite field . To do so, we will
employ a dissemination protocol based on randomized network
coding, namely, where each network node sends random linear

Fig. 1. Timing schedule of the dissemination protocol given by Algorithm II.1.

combinations (chosen to be uniform over ) of its collected
packets to its neighbors. We assume for simplicity that there are
no packet losses.

Dissemination Protocol

It is possible to separate the dissemination protocols into the
following operation categories.

1) Synchronous: All nodes are synchronized and transmit to
their neighbors according to a global clock tick (time-slot).
At time-slot , node sends linear combinations from
all vectors it has collected up to time . Once nodes
start transmitting information, they keep transmitting until
all receivers are able to decode.

2) Asynchronous: Nodes transmit linear combinations at ran-
domly and independently chosen time instants.

In this paper, we focus on the synchronous network where
we assume that each link has unit delay2 corresponding to each
time-slot; however, our results can be extended to asynchronous
networks as well.

Next, we explain in detail the dissemination protocol, that is
summarized in Algorithm II.1.

Timing: We depict in Fig. 1 the relative timing of events
within a time-slot. Nodes transmit at the beginning of a time-
slot. We assume that each packet is received by its intended re-
ceiver before the end of the time-slot. Thus, the time-slot dura-
tion incorporates the packet propagation delay in one edge of
the network.

Rate Allocation and Equivalent Network Graph: The dissem-
ination protocol first associates with each link of the network
a rate (measured as the number of packets transmitted per
time-slot on edge ). These rates are selected in advance using
a rate allocation method (see, for example, [8]).

For the rest of the paper, we consider an equivalent network
graph, where each edge has capacity equal to its allocated
rate . On this new graph, we can define the min-cut from
the source node to a node . Whenever we refer to
min-cut values in the following, we imply min-cut values over
this equivalent graph.

We assume that the rate allocation protocol we use satisfies

(3)

where is the capacity of edge . This very mild assumption
says that the node does not send more information
than it receives and is satisfied by all protocols that do not send
redundant packets.

2Unit delay can model a buffering window a node needs to wait to collect
packets from all its neighbors.
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In our work, we consider the case where , namely,
the dissemination of the source packets to the receivers takes
place by using the network over several time-slots.

Node Operation: When the dissemination starts, at time-slot
say zero, the source starts transmitting at each time-slot and to
each of its outgoing edges , randomly selected linear com-
binations of information packets. We will call the source
rate. The source continues until it has transmitted linear combi-
nations of all packets, i.e., for times-lots. Every other node

in the network, operates as follows.
1) Initially, it does not transmit, but only collects in a buffer

packets from its parents, until a time , which we call
waiting time and we will define in the following. As we
will see, each node can decide the waiting time by itself
and independently from other nodes.

2) At each time-slot , for all , it transmits to each
outgoing edge , linear combinations of all packets it
has collected in its buffer up to time .

Collected Subspaces: We can think of each of the source
messages as corresponding to one dimension of an -di-
mensional space where . We say
that node at time observes a subspace , with

dimension , if is the space spanned
by the received vectors at node up to time . Initially, at time

, the collected subspaces of all nodes (apart the source) are
empty; , .

Waiting Times: We next define the waiting times, which will
be used in the following sections to ensure that the subspaces
of different nodes be distinct, and are a usual assumption in
dissemination protocols; indeed, for large , the waiting time
does not affect the rate. For example, in the information-theo-
retic proof of the main theorem in network coding [13], each
node waits until it collects at least one message from each of its
incoming links before starting transmissions.

Definition 1: The waiting time for a node is the first
time-slot during which node receives information from the
source at a rate equal to its min-cut , and additionally, has
collected in its buffer a subspace of dimension at least .

Note that, because we are dealing with acyclic graphs, we can
impose a partial order on the waiting times of the nodes, such
that all parents of a node have smaller waiting time than the
node. Moreover, each node can decide whether the conditions
for the waiting time are met, by observing whether it receives
information at a rate equal to its min-cut, and what is the di-
mension of the subspace it has collected. That is, a node does
not need to know any topological information (apart from its
min-cut), and the waiting times do not need to be communicated
in advance to the nodes, but can be decided online based on the
network conditions.

Source Operation and the Source Subspace

As we discussed, the source needs to convey to the receivers
source packets that span the -dimensional subspace

, with . is isomorphic to ; thus,
for the purpose of studying relationships between subspaces of

, we can equivalently assume that , and that node

Alg. II.1: Dissemination protocol.

at time observes a subspace . This sim-
plification is very natural in the case where we employ coding
vectors, reviewed briefly in the following, as we only need to
consider the coding vectors for our purposes and ignore the re-
maining contents of the packets; however, we can also use the
same approach in the case where the source performs non-co-
herent coding, described subsequently.

1) Use of Coding Vectors: To enable receivers to decode, the
source assigns symbols of each message vector (packet) to
determine the linear relation between that packet and the orig-
inal vectors , . Without loss of generality, let
us assume these symbols (which form a vector of length )
are placed at the beginning of each message vector. This vector
is called coding vector. Each message vector contains two
parts. The vector with length is the coding vector
and remaining part, , is the information part where

The coding vectors , are chosen such that they
form a basis for . For simplicity, we assume where

is a vector with one at position and zero elsewhere.
For our purposes, it is sufficient to restrict our algorithms

to examine the coding vectors. Thus, the source has the space
; during the information dissemination, if a node at

time has collected packets with coding vectors , it has
observed the subspace . In other words,
the coding vectors capture all the information we need for our
applications.

2) Subspace Coding: Our approach also works in the case of
subspace coding, which was introduced in [17]. We next briefly
explain the idea of communication using subspaces, in a net-
work performing randomized network coding.

In the following, we use the same notation as introduced in
Section II-B. Let , , denote the set of
packets the source has. Assume that there is no error in the net-
work. An arbitrary receiver at node collects packets

, , where each can be presented as
. The coefficients are unknown and randomly

chosen over . In matrix form, the transmission model can be
represented as
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where is a random matrix and is the
matrix whose rows are the sources’ packets.

The matrices are randomly chosen, under constraints
imposed by the network topology. As stated in [17] and proved
in [30]–[32], the aforementioned model naturally leads to con-
sider information transmission not via the choice of but rather
by the choice of the vector space spanned by , i.e.,

.
In the case of subspace coding, the dissemination algorithm

works in exactly the same way as in the case of coding vectors;
what changes is how the source maps the information to the
packets it transmits, and how decoding occurs. However, this
is orthogonal to our purposes, since we perform no decoding of
the information messages, but simply observe the relationship
between the subspaces different nodes in the network collect.
Thus, the same approach can be applied in this case as well.

C. Input to Algorithms

We are interested in designing algorithms that leverage the
relationships between subspaces observed at different network
nodes for network management and control. The algorithms de-
sign will depend on the information that we have access to. We
distinguish between the following.

1) Global information: A central entity knows the subspaces
that all nodes in the network have observed.

2) Local information: There is no such omniscient entity, and
each node only knows what it has received, its own sub-
space .

We may also have information between these two extreme cases.
Moreover, we may have a static view, where we take a snap-
shot of the network at a given time instant , or a nonstatic view,
where we take several snapshots of the network and use the sub-
spaces’ evolution to design an algorithm.

We will argue in Section IV that capturing even global in-
formation can be accomplished with relatively low overhead
(sending one additional packet per node at the end of the dis-
semination protocol); thus, the algorithms we develop even as-
suming global information can in fact be implemented almost
passively and at low cost.

III. PROPERTIES OF RANDOM VECTOR

SPACES OVER A FINITE FIELD

In this section, we will state and prove basic properties and
results that we will exploit toward various applications in the
following sections. In particular, we will investigate the proper-
ties of random sampling from vector spaces over a finite field.
Such properties give us a better insight and understanding of
randomized network coding and form a foundation for the re-
sults and algorithms presented in this paper.

A. Sampling Subspaces Over

Here, we explore properties of randomly sampled subspaces
from a vector space . We start with the following lemma that
explores properties of a single subspace.

Lemma 1: Suppose we choose vectors from an -dimen-
sional vector space uniformly at random to construct

a subspace . Then the subspace will be full rank (has dimen-
sion ) w.h.p. (with high probability)3, namely

Proof: Refer to Appendix A.

We conclude that for large values of , selecting
vectors uniformly at random from to construct a subspace
is equivalent to choosing an -dimensional subspace from
uniformly at random. Note that this is not true for small values
of .

We next examine connections between multiple subspaces.

Lemma 2: Let and be two subspaces of with
dimension and respectively, intersection of dimension
and (i.e., ). Construct by choosing
vectors from uniformly at random. Then,

Proof: Refer to Appendix A.

Lemma 3: Suppose is a -dimensional subspace of a
vector space . Select vectors uniformly at random
from to construct the subspace . Then we have

(4)

with probability .
Proof: Refer to Appendix A.

Corollary 1: Suppose and are two subspace of
with dimension and respectively and joint dimension .
Let us take vectors uniformly at random from and
vectors from to construct subspaces and . Then, we
have

with probability .
Proof: Refer to Appendix A.

By choosing in Corollary 1, we have the
following corollary.

Corollary 2: Let us construct two subspaces and by
choosing and vectors uniformly at random respectively
from . Then, the subspaces and will be disjoint with
probability if .

We are now ready to discuss one of the important properties of
randomly chosen subspaces which is very useful for our work:
randomly selected subspaces tend to be “as far as possible”. We
will clarify and make precise what we mean by “as far as pos-
sible” (see also [33]). We first review the definition of a subspace
in general position with respect to a family of subspaces.

Definition 2 ([33, ch. 3]): Let be an -dimensional vector
space over the field and for , let be a subspace

3Throughout this paper, when we talk about an event occurring with high
probability, we mean that its probability behaves like ��� �� �, which goes
to 1 as � � �.
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of , with . A subspace of dimension
is, in general, position with respect to the family if

(5)

It should be noted that is the minimum
possible dimension of . So what the above definition
says is that the intersection of and each is as small as pos-
sible. Using the previous definition, we can state the following
theorem.4

Theorem 1: Suppose , , are subspaces of
. Let us construct a subspace by randomly choosing

vectors from . Then, will be in general position with
respect to the family w.h.p., i.e., with probability

.
Proof: Refer to Appendix A.

Theorem 1 demonstrates a nice property of randomized net-
work coding where the subspaces spanned by coding vectors
tend to be as far as possible on different paths of the network.

B. Rate of Innovative Packets

In the following sections, we will need to know the rate of
receiving innovative message vectors (packets) at receivers in a
dissemination protocol performing randomized network coding.
By innovative we refer to vectors that do not belong in the space
spanned by already collected packets. As is shown in [13], the
source can multicast at rate equal to the minimum min-cut of all
receivers if the intermediate nodes can combine the incoming
messages. Moreover, it is shown in [14] that using linear com-
binations is sufficient to achieve information transfer at a rate
equal to the minimum min-cut of all receivers. In [1] and [13],
it is also demonstrated that choosing the coefficients of the linear
combinations randomly is sufficient (no network-specific code
design is required) with high probability if the field size is large
enough.

To find the rate of receiving information at each node where
the implemented dissemination protocol performs randomized
network coding, we can use the following result given in
Theorem 2. Note that our described dissemination protocol,
although very common in practice, does not exactly fit to the
previous theoretical results in the literature that examine rates,
because the operation of the network nodes is not memory-less.
That is, while for example in [1], [13], [14] each transmitted
packet at time is a function of a small subset of the received
packets up to time (the ones corresponding to the same infor-
mation message), in our case a packet transmitted at time is a
random linear combination of all packets received up to time .
This small variant of the main theorem on randomized network
coding is very intuitive, and we formally state it in following.

Theorem 2: Consider a source that transmits packets over a
connected network using the dissemination protocol described
in Section II-B, and assume that the network nodes perform
random linear network coding over a sufficiently large finite
field. Then, there exists such that for all each node

4Different versions of this theorem can be easily derived from results in the
literature [33], but we repeat here a short derivation for completeness.

in the network receives independent linear combinations
of the source packets per time-slot, where min-cut .

Proof: Refer to Appendix B.

Given Theorem 2, we can state the following definition.

Definition 3: For a specific information dissemination pro-
tocol over a network, we define the steady state as the time pe-
riod during which each node in the network receives exactly

independent linear combinations of the source packets per
time slot and none of the nodes, except source , has collected

linearly independent combinations. We call the time that the
network enters steady state phase the steady state starting time
and denote it by . If the network never attains the steady state
phase then we set .

For our protocol in Section II-B, depends not only on
the network topology, but also on the waiting times . For the
waiting time defined in Definition 1 we can upper bound as
stated in Lemma 4.

Lemma 4: If is large enough, for the dissemination pro-
tocol given in Section II-B, we may upper bound the steady state
starting time as follows:

where is the longest path from the source to other nodes
in the network.5

Proof: Refer to Appendix A.

In order to be sure that the dissemination protocol given in
Section II-B enters the steady state phase, should be large
enough. Using Lemma 4, we have the following result, Corol-
lary 3.

Corollary 3: A sufficient condition for to be sure that the
protocol enters the steady state is that

where .

IV. TOPOLOGY INFERENCE

In this section, we will use the tools developed in Section III
to investigate the relation between the network topology and the
subspaces collected at the nodes during information dissemina-
tion. We will develop conditions that allow us to passively infer
the network topology with (asymptotically on the value of )
no error. The proposed scheme is passive in the sense that it
does not alter the normal data flow of the network, and the in-
formation rates that can be achieved. In fact, we can think of
our protocol as identifying the topology of the network which
is induced by the traffic.

We build our intuition starting from information dissemina-
tion in tree topologies, and then extend our results in arbitrary
topologies. Note that information dissemination using network
coding in tree topologies does not offer throughput benefits as
compared to routing; however, it is an interesting case study that
will naturally lead to our framework for general topologies. We

5Note that ���� is different from the longest shortest path which is called
diameter of � in the graph theory literature.
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Fig. 2. Directed tree with four nodes rooted at the source �.

then define conditions under which the topology of a tree and
that of an arbitrary network can be uniquely identified using the
observed subspaces. Note that uniquely identifying the topology
is a strong requirement, as the number of topologies for a given
number of network nodes is exponential in the number of nodes.

A. Tree Topologies

Let be a network that is a directed tree of depth
, rooted at the source node . We will present 1) necessary

and sufficient conditions under which the tree topology can be
uniquely identified, and 2) given that these conditions are satis-
fied, algorithms that allow us to do so.

We first consider trees where each edge is allocated the same
rate , and thus the min-cut from the source to each node of
the tree equals . We then briefly discuss the case of undirected
trees. Finally, we examine the case where edges are allocated
different rates, and thus nodes may have different min-cuts from
the source.

1) Common Min-Cut: Assume that each edge of the tree has
the same capacity (i.e., a rate allocation algorithm has assigned
the same rate on each edge of the tree). Thus, all nodes
in the tree have the same min-cut, equal to . Then, according
to the dissemination protocol introduced in Algorithm II.1, each
node will wait time , until it has collected a dimensional
subspace, and then start transmitting to its children. Our claim
is that, we can then identify the network topology using a single
snapshot of all nodes’ subspaces at a time . Before formally
proving the result in Theorem 3, we will give some intuition on
why this is so, and why the waiting time is crucial to achieve
this. We start from an example on the simple network in Fig. 2.

Example 1: Consider the tree in Fig. 2 and assume that the
edges have unit capacity ( ). Algorithm II.1 works as fol-
lows. At time , node receives a vector from the source

. Node waits, as it has not yet collected a di-
mensional subspace. At time , it receives a vector . It
now has collected the subspace , and thus
at the next time-slot, it will start transmitting. At time ,
node transmits vectors and to nodes and , re-
spectively, with . Thus and

. Node also receives a vector from the
source, and thus . Consider now the sub-
spaces , and . We see that ,
and ; we thus conclude that nodes and
are children of node . Moreover, , which
will allow us to distinguish between children of these two nodes
when we deal with larger trees.

In contrast, if Algorithm II.1 did not impose a waiting time,
and node started transmitting to nodes and at time ,
then both nodes and would receive the same subspace ,
i.e., . In fact, at all subsequent times,
we will have that . Thus, we would
not be able to distinguish between these two nodes.

The main idea in our result is that, if we consider two nodes
and in the network which have collected subspaces

and at time , then, unless and have a child-ancestor
relationship (i.e., are on the same branch in the tree), it holds
that and .

The challenge in proving this is that we deal with subspaces
evolving over time, and thus we cannot directly apply the results
in Section III. For example, for the network in Fig. 2, and

are not subspaces that are selected uniformly at random
from ; instead, they are build over time as also
evolves. We will thus need the following two results, that modify
the results in Section III to take into account the time evolu-
tion in the creation of the subspaces. We start by examining in
Lemma 5 the relationship between subspaces collected at the
immediate children of a given parent node (for example, at the
children and of node ). These are created by sampling the
same subspaces (those at node ). We then examine in Corol-
lary 4 the relationship between subspaces collected at nodes that
have different parents (for example, a node that has as parent
and a node that has as parent).

Lemma 5: Suppose there exist (proper) subspaces
with dimensions re-

spectively. Let us construct the set of subspaces ,
, as follows. Set where

is the span of vectors chosen uniformly at random from
such that and

for . Similarly, we construct the set of subspaces
where for we have similar con-

ditions, namely, and for
. Then, we have

with high probability.
Proof: Refer to Appendix A.

Corollary 4: Suppose that there exist two set of subspaces
and such that

and . Moreover, assume that
and . Now, con-

struct two set of subspaces and by set-
ting and where

is chosen uniformly at random from and
is chosen uniformly at random from (with some ar-
bitrary dimension). Then, we have

with high probability.
Proof: Refer to Appendix A.

Theorem 3: Consider a tree of depth where each edge
has capacity , and the dissemination Algorithm II.1. A static
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global view of the network at time , with ,
allows to uniquely determine the tree structure with high proba-
bility, if the waiting times are chosen according to Definition 1.

Proof: We will say that a node of the tree is at level if it
has distance from the source. In a tree, there exists a unique
path from source to node

at level of the network.
If we consider a time in steady state (where all nodes have

nonempty subspaces and none has collected the whole space),
then clearly using Algorithm II.1 for dissemination in the net-
work for the nodes along the path it holds that

(6)

Note that the conditions on ensure that the network is in steady
state.

To identify the topology of the tree it is sufficient to show that
for any node that is not in . Let and

be the distance of and from the source, respectively.
First, we observe that, starting from the source, by applying

Lemma 5 and Corollary 4 and because of Definition 1 the sub-
spaces of the nodes at the same level (same distance from the
source) are different at all times. So it only remains to check the
condition for those node that are not in the
same level as .

Consider two cases. First, if then let be the ancestor
of at the same level as . By Corollary 4, we have

so because .
Now consider the second case, . We start by assuming

and then we will show that this assumption
leads to a contradiction. Let be the ancestor of at the same
level of . Then, we make the following observation. If at time

we have by Lemma 2, we should have had
and so and finally

we should had had . But according to
Corollary 4, this is a contradiction because and are at the
same level.

In the above argument, we have shown that is the
smallest subspace contains among all nodes’ subspaces
at time . So we are done.

Assume now that Theorem 3 holds. To determine the tree
structure, it is sufficient to determine the unique parent each
node has. From the previous arguments, the parent of node
is the unique node such that is the minimum dimension
subspace that contains . Then, the parent of node is the
node such that

As we will discuss in Section IV-C, collecting the subspace
information from the network nodes can be implemented ef-
ficiently. The algorithm that determines the tree topology re-
duces this information to only two “sufficient statistics”: the di-
mension of each subspace and the
dimension of the intersection of every two subspaces

, as described in Algorithm IV.1,
assuming that the conditions of Theorem 3 hold.

Alg. IV.1: Find the network topology for a tree.

2) Directed Versus Undirected Network: In a tree with a
single source, since new information can only flow from the
source to each node along a single path, whether the network
is directed or undirected makes no difference. In other words,
from (6), all vectors that a node will send to its predecessor
will belong in the subspace the predecessor already has. Thus,
Theorem 3 still holds for undirected networks with a common
min-cut.

3) Different Min-Cuts: Assume now that the edges of the
tree have different capacities, i.e., assigned different rates. In
this case, the proof of Theorem 3 still holds, provided that the
condition in Theorem 3 is modified to

where .
We underline that this theorem would not hold without the

assumption in (3). Without this condition, it is possible that we
cannot distinguish between nodes at same level with a common
parent as explained in the following example.

Example 2: If in the network in Fig. 2, edge has unit
capacity, while edge and have capacity two. In this case,
it is easy to see that there exists such that

, . Clearly in this case, we cannot distinguish
between nodes and with this dissemination protocol.

B. General Topologies

Consider now an arbitrary network topology, corresponding
to a directed acyclic graph. An intuition we can get from ex-
amining tree structures is that we can distinguish between two
topologies provided all node subspaces are distinct. This is used
to identify the unique parent of each node. In general topologies,
it is similarly sufficient to identify the parents of each node, in
order to learn the graph topology. The following theorem claims
that having distinct subspaces is in fact a sufficient condition for
topology identifiability over general graphs as well.

Theorem 4: In a synchronous network employing random-
ized network coding over , a sufficient condition to uniquely
identify the topology with high probability as , is that

(7)

for some time . Under this condition, we can identify the
topology by collecting global information at times and ,
i.e., two consecutive static views of the network.

Proof: Assume node has the parents
. Let denote the subspaces

node has received from its parents up to time , where
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Alg. IV.2: Find the topology of a general network.

. From construction, it is clear that
.

To identify the network topology, it is sufficient to decide
which node is the parent that sent the subspace
to node for each , and thus find the parents of node . We
claim that, provided (7) holds, node has as parent the node

which at time has the smallest dimension subspace con-
taining . Thus, we can uniquely identify the network
topology, by two static views, at times and , as Algorithm
IV.2 describes.

Indeed, let denote the subspace that node
receives from parent at exactly time , that is,

. For each ,
if for all , clearly

for all , and we are done.
Otherwise, using Lemma 2 and because (7) holds, with high
probability, we have for all except
those nodes that their subspaces contain . So we are
done.

Note that to identify the network topology, we need to know,

for all nodes , the dimension of their ob-

served subspaces at time , the dimension
for all parents of node , and the dimension of the in-

tersection of with all , , denoted as

. Algorithm IV.2 uses this in-
formation to infer the topology.

The sufficient conditions (7) in Theorem 4, may or may not
hold, depending on the network topology and the information
dissemination protocol. Next, we will investigate for what net-
work topologies the conditions (7) hold for the dissemination
Algorithm II.1 so that the network is identifiable.

Lemma 6: Consider two arbitrary nodes and , where
and are the par-

ents of and , respectively. Let
and If

we should have had w.h.p.
Proof: Let us assume that . This im-

plies that if and are subspaces collected by nodes
and at time then

From construction, we have and
.

On the other hand, since for every , we randomly chose
from and since (because

) using Lemma 2, we conclude that we should have
which means we should have .

Similarly, we should have . As a result, with
high probability, we have to have

and we are done.

Corollary 5: If for , we should
have had , w.h.p.

Proof: Consider the parents of nodes and as super-
nodes and . Using a similar argument as stated in
Lemma 6, we can conclude that the parents of and ,
denoted as and , should satisfy

We use this argument times to get the result.

Lemma 7: If the dissemination protocol is in the steady state,
, we could not have unless nodes and

have the same set of ancestors at some level above in the
network.

Proof: Because , we have
and . Let us assume

so we have . From Corollary 5, we can write

for every . Increasing , two cases may happen. First,
either or contains the source node that results
in or which
is a contradiction since . Second, nodes and have the
same set of ancestors at some level .

Up to here, we have shown that assuming the dissemination
protocol is in the steady state, the subspaces of two arbitrary
nodes are equal only if they have the same ancestors at some
level above in the network. The following result, Theorem 5
states sufficient conditions that make the nodes’ subspaces dif-
ferent for dissemination Algorithm II.1.

Theorem 5: Suppose two arbitrary nodes and have the
same set of parents at some level .
The following conditions are sufficient so that the dissemination
Algorithm II.1 satisfies condition (7)6:

min-cut min-cut

min-cut min-cut

Proof: Consider the set of nodes in . From the definition,
we know that there exists at least one path of length from each
node in to the node . But also there might exist paths of
length less than from some nodes in to . If this is the
case, because the topology is a directed acyclic graph, we can
find a subset of the nodes in such that it forms a cut for

6Note that for the min-cut � to node �, � ���� � ������ �	, we have
� � ����
� � � �.
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Fig. 3. Sets used in the proof of Theorem 5: the set � ��� contains the parents
of node � at distance � � �; the set� ��� contains the set of parents at distance
� � �; while � is the subset of � ��� at distance no less than � � �.

the node and the shortest path from each node in to is
(see Fig. 3). Moreover, we have min-cut and

min-cut .
Now assume that such that
. Let be the accumulative min-cut from to each

node in . By this we mean that and is the amount
of increase in the min-cut from by adding node and so on.
We similarly consider the accumulative min-cut values from
to and denote these by . So we have

and .
From definition of the waiting times (Definition 1), we can

write

Then, we have

(8)

For , we can also write

or

(9)

From (8), (9), and the theorem assumptions we conclude that
. Now for time-slots later we write

where is true because receives packets from with rate at
most ; is true because and ;
and finally, is true because after all of the nodes in
receive packets at rate equal to their min-cut which means that

(the same is true for ) receives packets at rate equal to its
min-cut .

The same inequality holds for the dimension of
. Thus, for time , we cannot have

and if and . So using
Corollary 5, we are done.

Intuitively, what Theorem 5 tell us is that, if for a node there
exists a path that does not belong in any cut between the source
and another node , then nodes and will definitely have dis-
tinct subspaces. The only case where nodes and may have
the same subspace is, if they have a common set of parents, a
common cut. Even then, they would need both of them to receive
all the innovative information that flows through the common
cut at the same time. Note that the condition of Theorem 5 are
also necessary for identifiably for the special case of tree topolo-
gies, such as the topology in Fig. 2.

C. Practical Considerations

We here argue that our proposed scheme can lead to a prac-
tical protocol, where nodes passively collect information during
the dissemination process, and send once a small amount of in-
formation to the central node in charge of the topology infer-
ence. In particular, we assume that the nodes follow the informa-
tion dissemination protocol and at some point the central node
query them to report the subspaces they gather at a specific7 time
.

We now calculate the communication cost (total number of
bits required to be transmitted to a central node) of the proposed
passive inference algorithm. Each node has to transmit at most

subspaces to the central node where is the max-
imum in-degree of nodes in the network. There are nodes in
the network so subspace have to be transmitted. The
total number of subspaces of (which itself is an -dimen-
sional space) is

7We assume the query is send before time � actually occurs; Also note that if
the number of source packets � is much larger than the min-cut to each node,
and if we have an estimate for � ��� (the maximum in-degree of nodes in the
network), a central node can with high probability select at time � in steady state.
A node can also send a feedback message to inform the central node if it is not
at steady state at time �.
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where is the Gaussian number, the number of -dimen-
sional subspaces of an -dimensional space. To approximate the
Gaussian number we use [32, Lemma 1]; note that the approxi-
mation holds for large .

So to encode one of the subspace of we need approxi-
mately bits. As a result, the total number of bits need
to be transmitted to the central node is at most

Clearly, the complexity depends on the size of , the number
of packets that the source transmits. In our work, we assume
that is large enough, so that the network enters in steady state;
on the other hand, other considerations such as decoding com-
plexity at network nodes, would require to take moderate
values. Note that, for our algorithm to work, (i.e., to sample
the network while in the steady state) we only require that

(Corollary 3), where is some constant that
determines how many time slots the network is in the steady
state. If has such a size, the maximum number of bits that
need to be transmitted per node (communication cost per node)
is

In the aforementioned equation , , and are some
constants. The only parameter that depends on the network size
is . However for the most of practical content distribution
networks the longest path of network is kept small to ensure a
good connectivity between nodes in the network (see, for ex-
ample, [34]).

To give a specific example for a possible communication cost,
let us consider a practical scenario where ,

, , , and . Then we have
. In contrast, in a practical dissem-

ination scenario (e.g., video streaming), we would disseminate
a large number of information packets each possibly as large as
a few megabytes; thus, the overhead of the topological informa-
tion would not be significant.

V. LOCATING BYZANTINE ATTACKERS

In this section, we explore a problem that is dual to topology
inference: given complete knowledge of the topology, we
leverage subspace properties to identify the location of a mali-
cious Byzantine attacker.

In a network-coded system, the adversarial nodes in the net-
work disrupt the normal operation of the information flow by in-
serting erroneous packets into the network. This can be done by
inserting spurious data packets into their outgoing edges. One
way in which these erroneous packets can be prevented from
disrupting information flow is by reducing the transmission rate
to below the min-cut of the network, and using the redundancy
to protect against errors; [20]–[22]. One such technique, using
subspaces to code information was proposed in [17]. In this ap-
proach, the source sends a basis of the subspace corresponding
to the message. In the absence of errors, the linear operations
of the intermediate nodes do not alter the sent subspace, and
hence the receiver decodes the message by collecting the basis
of the transmitted subspace. A malicious attacker inserts vectors

that do not belong in the transmitted subspace. Therefore, if the
message codebook uses subspaces that are “far enough” apart
(according to an appropriately defined distance measure), then
one can correct these errors [17]. Note that in this technique,
we do not need any knowledge of the network topology for the
error correction mechanism. All that is needed is that the inter-
mediate nodes do not alter the transmitted subspace (which can
be done if they do linear operations).

The approach of this section to locating adversaries uses the
framework developed in the previous sections, where it was
shown that under randomized network coding, the subspaces
gathered by the nodes of the network provide information about
the topology. Therefore, the basic premise in this section is to
use the structure of the erroneous subspace inserted by the ad-
versary to reveal information about its location, when we al-
ready know the network topology.

A. Problem Formulation

Consider a network represented as a directed acyclic graph
. We have a source, sending information to re-

ceivers, and one (or more) Byzantine adversaries, located at in-
termediate nodes of the network. We assume complete knowl-
edge of the network topology and consider the source and the
receivers to be trustworthy (authenticated) nodes that are guar-
anteed not to be adversaries.

Suppose source sends vectors, that span an -dimen-
sional subspace of the space , where we assume .
In particular, in this section we will consider (without loss of
generality) subspace coding, where belongs to a codebook

, designed to correct network errors and erasures [17].
In the absence of any adversaries in the network each receiver
, , can decode the exact space . Now assume

that there is an adversary, Eve, who attacks one of the nodes in
the network by combining a -dimensional subspace with its
incoming space and sending the resulting vectors to its children.
Then, the receiver collects some linearly independent vectors
that span a subspace . We can write

where is a linear operator. This operator models the
linear transformation that the network induces on the inserted
source and adversary packets.

We assume that the receiver is able to at least detect that a
Byzantine attack is under way. Moreover, we assume that the
receiver is able to decode the subspace that the source has
sent. This might be, either because the receiver has correctly
decoded the sent message (i.e., using code construction from
[17]), or, because after detecting the presence of an attack has
requested the source subspace through a secure channel from
the source node.

We can restrict the Byzantine attack in several ways, de-
pending on the edges where the attack is launched, the number
of corrupted vectors inserted, and the vertices (network nodes)
that the adversary has access to. In this section we will distin-
guish between the cases where

1) there is a single Byzantine attacker located in a vertex of
the network, and
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2) there are multiple independent attackers, located on dif-
ferent vertices, that act without coordinating with each
other.

Moreover, we assume that each attacker located on a single
vertex is able to corrupt any outgoing edges by inserting arbi-
trary erroneous information.

Now, we are interested in understanding under what condi-
tions we can uniquely identify the attacker’s location (or, up to
what uncertainty we can identify the attacker), under the afore-
mentioned scenarios.

B. Case of a Single Adversary

In this section, we focus on the case where we want to locate
a Byzantine adversary, Eve, controlling a single vertex of the
network graph.

In Section V-B1, we illustrate the limitation of using only the
information the receivers have observed along with the knowl-
edge of the topology, to locate the adversary. This motivates re-
quiring additional information from the intermediate nodes re-
lated to the subspaces observed by them. In Section V-B2, we
show that such additional information allows us to localize the
adversary either uniquely or within an ambiguity of at most two
nodes.

1) Identification Using Only Topological Information: In
order to illustrate the ideas, we will examine the case where the
corrupted packets are inserted on a single edge of the network,
say edge . The extension to the cases where multiple edges
get corrupted is easy.

Since each receiver knows the subspaces it has re-
ceived from its parents, it knows whether what it re-
ceived is corrupted or not (a subspace of or not). Using this,
we can infer some information regarding topological properties
that the edge should satisfy. In particular we have the fol-
lowing result, Lemma 8.

Lemma 8: Let denote the set of paths8 starting from the
source and ending at edge . Then, if is the set of incoming
edges to receivers that bring corrupted packets, while the set
of incoming edges to receivers that only bring source informa-
tion, the edge belongs in the set of edges , with

Proof: If receives corrupted vectors from an incoming
edge , then there exists at least one path that connects to .
Then, is part of at least one path in .

Conversely, if a receiver does not receive corrupted packets
from an incoming edge , then does not form part of any path
in . That is, there does not exist a path that connects to .

The following example illustrates this approach.

Example 3: Consider the network in Fig. 4, and assume that
receives corrupted packets from edge and uncorrupted

8In the following, we are going to equivalently think of � as the set of all
edges that take part in these paths.

Fig. 4. Source � distributes packets to receivers � and � .

packets from , while receives only uncorrupted packets.
Then and the attacker is located on node .

In Example 3, we were able to exactly identify the location of
the adversary, because the set contained a single edge, and
node is trustworthy. It is easy to find network configurations
where contains multiple edges, or in fact all the network
edges, and thus, we can no longer identify the attacker. The
following example illustrates one such case.

Example 4: Consider the line network shown in Fig. 5. Sup-
pose the attacker is node . If the receiver sees a corrupted
packet, then using just the topology, the attacker could be any of
the other nodes in the line network. This illustrates that just the
topology and receiver information could lead to large ambiguity
in the location of the attacker.

Therefore, Example 4 motivates the ideas examined in Sec-
tion V-B2 which obtain additional information and utilize the
structural properties of the subspaces observed.

2) Identification Using Information From All Network
Nodes: We will next discuss algorithms where a central au-
thority, which we will call controller, requests from all nodes
in the network to report some additional information, related
to the subspaces they have received from their parents. The
adversary could send inaccurate information to the controller,
but the other nodes report the information accurately. Our task
is to design the question to the nodes such that we can locate
the adversary, despite its possible misdirection.

The controller may ask the nodes of the following types of
information, listed in decreasing order of complexity.

Information 1: Each node sends all subspaces it has
received from its parents, where .
Information 2: Each node sends a randomly chosen
vector from each of the received subspaces (
vectors in total).

Information 2 is motivated by the following observation made
by Lemma 2: let and be two subspaces of , and assume
that be a randomly selected vector from . Then, for ,

if and only if . Thus, a randomly selected
vector from allows to check whether or not.

In fact, we will show in this section that for a single adversary
it is sufficient to use9 Information 2, and classify the edges of
the network by simply testing whether the information flowing

9Using Information 2, these statements are made with high probability, i.e.,
the probability goes to one as field size � � �.
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Fig. 5. Source � sends information to receiver � over a line network.

through each edge is a subspace of or not (i.e., is corrupted
or not).

Theorem 6: Using Information 1, by splitting the network
edges into corrupted and uncorrupted sets, we can narrow the
location of the adversary up to a set of at most two nodes. With
Information 2, the same result holds w.h.p.

Proof: The network is a directed acyclic graph, so we can
impose a partial order on the edges of the graph, such that

if is an ancestor edge of (i.e., there exists a path from
to ). Then, having Information 1 or Information 2, we can

divide the edges of the network into two sets: the set of edges
through which are reported to flow corrupted subspaces, and

the remaining edges through which the source information
flows so we have and . Note that
all the outgoing edges from the source belong in .

Nodes in the network perform randomized network coding so
every node that receives corrupted information on at least one
of its incoming edges makes all of the outgoing edges polluted
w.h.p. Let be the number of corrupted outgoing edges of a
node where we have . For each node that
is not an adversary, we have either or .

Now, to prove the theorem we consider the following possible
cases.

1) If the adversary Eve corrupts outgoing edges where
we can identify the node she has attacked

uniquely because its behavior is different from all other
nodes.

2) If she corrupts all of its outgoing edges, ,
then she can fraud us by declaring that one of the node’s
incoming edges is corrupted. If declares more than one
of the incoming edges as corrupted we can find its location
uniquely.

3) She can also corrupt only one of its outgoing edges,
, and pretends that its children is in fact the

adversary by declaring all of its incoming edges bring
noncorrupted information. She cannot declare that any of
its incoming edges are polluted since then we may find its
location uniquely.

In all of the aforementioned cases, the adversary is on the
boundary of two sets and and the ambiguity about its
location is at most within a set of two vertices where this set
contains those two vertices that are connected by the corrupted
edge with highest order among all corrupted edges (recall that
we can compare all of the corrupted edges using the imposed
partial order).

C. Case of Multiple Adversaries

In the case of a single adversary, it was sufficient to divide
the set of edges into two sets, and , as described in the
previous section. In the presence of multiple adversaries, this
may no longer be sufficient. An additional dimension is that
realistically, we may not know the exact number of adversaries

present. In the following, we discuss a number of algorithms,
that offer weaker or stronger identifiability guarantees.

1) Identification Using Only Topological Information: The
approach in Section V-B1 can be directly extended in the case
of multiple adversaries, but again, offers no identifiability guar-
antees.

Example 5: Consider again the network in Fig. 4, and assume
that receives corrupted packets only from edge while

receives corrupted packets only from edge . Then
and (depending on our assumptions)

we may have
1) a single adversary located on node ,
2) two adversaries, located on nodes and ,
3) two adversaries, located on nodes and , or nodes

and , or
4) three adversaries, located on nodes , , and .

2) Identification Using Splitting: Similarly to Section V-B2,
using Information 1 or Information 2, we can divide the set of
edges into two sets and , depending on whether the in-
formation flowing through each edge belongs in or not. De-
pending on the network topology, we may be able to uniquely
identify the location of the attackers. However, this approach, al-
though it guarantees to find at least one of the attackers (within
an uncertainty of at most two nodes), does not necessarily find
all the attackers, even if we know their exact number.

To show this let us state the following definition.

Definition 4: We say that node is in the shadow of an adver-
sary node , if there exists a path that connects every incoming
edge of to a corrupted outgoing edge of .

Then, we have the following result.

Lemma 9: By splitting the network edges into two sets
and we cannot identify adversarial nodes that are in the
shadow of an adversary .

Proof: This is because if an attacker is in the shadow of
another attacker, it may corrupt only already corrupted vectors
and thus not incur a detectable effect. So we cannot distinguish
between an attacker and a normal node that are in the shadow
of .

The following example illustrates these points.

Example 6: For the example in Fig. 4, assume that each at-
tacker corrupts all its outgoing edges, and consider the following
two situations.

1) Assume that nodes and are attackers.
If reports truthfully while lies we get

,
which allows to identify the attackers.

2) Assume that nodes and are attackers. Then, we say
that node is in the shadow of node , as it corrupts
only already packets corrupted by . Indeed, if

,
knowing that the source is trustworthy, we can infer that
node is an attacker. However, any of the nodes , ,
and can equally probably be the second attacker. All
these nodes are in the shadow of node .
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Theorem 7: Using Information 1, it is possible to narrow
down the location of those adversaries that have the highest
order in the network using the splitting method. The same re-
sult holds for Information 2 w.h.p.

Proof: As stated in the proof of Theorem 6, we can impose
a partial order on the edges of the network graph. Then, by using
Information 1 or Information 2, we may split the network edges
into two sets and .

Because every node in the network performs randomized net-
work coding, there are only two possibilities for each adversary
to corrupt its outgoing edges and report subspaces for its in-
coming edges such that it is not located uniquely. These are as
follows.

1) She corrupts some (or all) of its outgoing edges but reports
its incoming edges as uncorrupted.

2) She corrupts all of its outgoing edges and reports some (at
least one) of its incoming edges as corrupted.

Now, let us consider the set of all the corrupted edges that
have highest order with respect to other corrupted edges and
cannot be compared against each other. For each of the afore-
mentioned cases, there should be at least one adversary con-
nected to every edge in this set.

3) Identification Using Subset Relationships: In this section,
we develop a new algorithm to find the adversaries which is
based on Information 1.

For each node , let denote
the set of parent nodes of . We are going to treat as a
super-node, and use the notation for the
union of the subspaces of all nodes in . Also recall that

denotes the subspace received by node from node .
Our last algorithm checks, for every node , whether

(10)

Then, we have the following result, Theorem 8.

Theorem 8: If the pairwise distance between adversaries
is greater than two, it is possible to find the exact number as
well as the location of the attackers (within an uncertainty of
parent–children sets) using the subset method.

Proof: First, let us focus on a single adversary case where
is the node attacked by the adversary. Then we will gen-

eralize the idea for an arbitrary number of adversaries. If (10) is
satisfied for all children of , we know that node is not an ad-
versary. If the relationship is not satisfied, that is
for at least one child of , we consider node as a potential
candidate for being an adversary. For sure, we know that

but depending on the subspace that the adversary reports, the
relation (10) may not be also satisfied for other nodes. Based on
what the adversary reports, there would be two possible cases.

If the adversary pretends that it is a trustworthy node (just
declares the received subspace from its parents), the aforemen-
tioned relation also fails for the children of who receive cor-
rupted subspaces. On the other hand, if the adversary tells the
truth and declares its corrupted subspace, we have

Thus, the ambiguity set we have identified includes the adver-
sary and its parents and/or its children depending on the adver-
sary’s report.

Repeating this procedure for every node in the network,
we can identify sets of potential adversaries. We know that
depending on the adversaries action there exists ambiguity
in finding their exact location. In fact in the worst case, the
uncertainty is within a set of nodes including the adversary, its
parents and its children. So if the distance between adversaries
is greater than two, the “uncertainty” sets do not overlap. In this
case, we can easily distinguish between different adversaries.

This procedure allows us to identify adversaries (within the
mentioned parent–children ambiguity set), even if one is in the
shadow of another, and even if we do not know their exact
number, provided they are “far enough” in the network to be
distinguishable.

VI. PRACTICAL IMPLICATIONS FOR TOPOLOGY MANAGEMENT

In Section IV, we demonstrated that using subspaces of all
nodes, we can infer the network topology under certain condi-
tions. In this section, we will show that even from what a single
node observes, it is possible to get some information regarding
the bottlenecks and clustering in the network.

Leveraging this observation in the context of P2P networks,
we propose algorithms that use this information in a distributed
peer-initiated manner to avoid bottlenecks and clustering.

A. Problem Statement and Motivation

In P2P networks that employ network coding for content
distribution (see, for example, Avalanche [3], [4]) we want
to create and maintain a well-connected network topology, to
allow the information to flow fast between the nodes; however,
this is not straightforward. P2P networks are very dynamically
changing networks, where hundreds of nodes may join and
leave the network within seconds. All nodes in this network
are connected to a small number of neighbors (e.g., four to
eight). An arriving node is allocated neighbors among the active
participating nodes10, which accept the solicited connection
unless they have already reached their maximum number of
neighbors. As a result, nodes that arrive at around the same
time tend to get connected to each other, since they are all
simultaneously available and looking for neighbors. That is, we
have formation of clusters and bottlenecks in the network.

To avoid this problem, one method adopted in protocols is
to ask all nodes to periodically drop one neighbor and recon-
nect to a new one among an active peers list. This randomized
rewiring results in a fixed average number of reconnections per
node independently of how good or bad is the formed network
topology. Thus, to achieve a good, on the average, performance
in terms of breaking clusters, it entails a much larger number of
rewiring than required, and unnecessary topology changes.

An alternative approach is to have peers initiate topology
rewirings when they detect they are in a cluster. Clearly a cen-
tral node could keep some structural information, i.e., keep track

10This is usually done by a central node which we call it (following Avalanche
[3], [4]) “registrat.” This is the central authority that keeps the list of all nodes
in the network and gives every new node a set of neighbors.
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Fig. 6. Source � distributes packets to the peers �, �, � and � over (a) the
overlay network that uses (b) the underlying physical network.

of the current network topology, and use it to make more edu-
cated choices of neighbor allocations. However, the informa-
tion this central node can collect only reflects the overlay net-
work topology, and is oblivious to bandwidth constraints from
the underlying physical links. Acquiring bandwidth information
for the underlying physical links at the central node requires
costly estimation techniques over large and heterogeneous net-
works, and steers toward a centralized network operation. We
will argue that such bottlenecks can be inferred almost passively
in a peer-initiated manner, thus alleviating these drawbacks.

Here, we will show that the coding vectors the peers receive
from their neighbors can be used to passively infer bottleneck
information. This allows individual nodes to initiate topology
changes to correct problematic connections. In particular, peers
by keeping track of the coding vectors they receive can detect
problems in both the overlay topology and the underlying phys-
ical links. The following example illustrates these points.

Example 7: Consider the toy network depicted in Fig. 6(a)
where the edges correspond to logical (overlay network) links.
The source has packets to distribute to four peers. Nodes

, , and are directly connected to the source , and also
among themselves with logical links, while node is connected
to nodes , , and . In this overlay network, there exist three
edge-disjoint paths between source and any other nodes.

Assume now [as shown in Fig. 6(b)] that the logical links ,
, share the bandwidth of the same underlying physical

link, which forms a bottleneck between the source and the re-
maining nodes of the network. As a result, assume the band-
width on each of these links is only 1/3 of the bandwidth of the
remaining links. A central node (registrat), even if it keeps track
of the complete logical network structure by querying each node
asking about its neighbors, is oblivious to the existence of the
bottleneck and the asymmetry between the link bandwidths.

Node , however, can infer this information by observing
the coding vectors it receives from its neighbors , and .
Indeed, when node receives a coded packet from the source,
it will forward a linear combination of the packets it has already
collected to nodes , , and . Now each of the nodes and ,
once they receive the packet from node , they also attempt to
send a coded packet to node . But these packets will not bring
new information to node , because they will belong in the
linear span of coding vectors that node has already received.
Similarly, when nodes and receive a new packet from the
source, node will end up being offered three coded packets,

one from each of its neighbors, and only one of the three will
bring to node new information.

More formally, the coding vectors nodes , , and will
collect will effectively span the same subspace; thus the coded
packets they will offer to node to download will belong in
significantly overlapping subspaces and will thus be redundant
(we formalize these intuitive arguments in Section VI-B). Node

can infer from this passively collected information that there
is a bottleneck between nodes , , and and the source, and
can thus initiate a connection change.

B. Theoretical Framework

Here, we use the same notations introduced in Section II. For
simplicity, we will assume that the network is synchronous.11

Nodes are allowed to transmit linear combinations of their re-
ceived packets only at clock ticks, at a rate equal to the adjacent
link bandwidth.

Now we use the framework of Section III to investigate the
information that we can obtain from the local information of a
node’s subspace. From notations defined in Section II, we know
that for an arbitrary node , we can write

We are interested in understanding what information we can
infer from these received subspaces , , about bot-
tlenecks in the network. For example, the overlap of subspaces
from the neighbors reveals some information about bottlenecks.
Therefore, we need to show that such overlaps occur due to topo-
logical properties and not due to particular random linear com-
binations chosen by the network code.

Let us assume that the subspaces a node receives from
its set of parents have an intersection of dimension .
Then, we have the following observations.

Observation 1: The subspaces , , of the neigh-
bors have an intersection of size at least (see Corollary 1).

Observation 2: The min-cut between the set of nodes
and the source is smaller than the min-cut between the node
and set (see Theorem 2).

In the following, we will discuss algorithms that use such
observations for topology management.

C. Algorithms

Our peer-initiated algorithms for topology management con-
sist of three tasks.

1) Each peer decides whether it is satisfied with its connection
or not, using a decision criterion.

2) An unsatisfied peer sends a rewiring request, that can con-
tain different levels of information, either directly to the
registrat, or to its neighbors (these are the only nodes the
peer can communicate with).

3) Finally, the registrat, having received rewiring requests, al-
locates neighbors to nodes to be reconnected.

11This is not essential for the algorithms but simplifies the theoretical analysis.
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Fig. 7. Sample of topology with three clusters: cluster 1 contains nodes 1–10,
cluster 2 nodes 11–20 and cluster 3 nodes 21–30.

The decision criterion can capitalize on the fact that overlap-
ping received subspaces indicate an opportunity for improve-
ment. For example, in the first algorithm we propose (Algorithm
1), a node can decide it is not satisfied with a particular neighbor,
if it receives , noninnovative coding vectors from it, where

is a parameter to be decided. Then, it has each unsatisfied node
directly contact the registrat and specify the neighbor it would
like to change. The registrat randomly selects a new neighbor.
This algorithm, as we demonstrate through simulation results,
may lead to more rewirings than necessary: indeed, all nodes
inside a cluster may attempt to change their neighbors, while it
would have been sufficient for a fraction of them to do so.

Our second algorithm (Algorithm 2) uses a different decision
criterion: for every two neighbors and , each peer com-
putes the rate at which the received joint space and
intersection space increases. If the ratio between
these two rates becomes greater than a threshold , the node de-
cides it would like to change one of the two neighbors. However,
instead of directly contacting the registrat, it uses a decentralized
voting method that attempts to further reduce the number of re-
connections. Then, the registrat randomly selects and allocates
one new neighbor for the nodes have sent rewiring request.

Our last proposed algorithm (Algorithm 3), while still peer-
initiated and decentralized, relies more than the two previous
ones in the computational capabilities of the registrat. The basic
observation is that, nodes in the same cluster will not only re-
ceive overlapping subspaces from their parents, but moreover,
they will end up collecting subspaces with very small distance
(this follows from Theorem 2 and Corollary 1 and is also illus-
trated through simulation results in Section VI-D; see Fig. 8).
Each unsatisfied peer sends a rewiring request to the registrat,
indicating to the registrat the subspace it has collected. A
peer can decide it is not satisfied using for example the same
criterion as in Algorithm 2.

The registrat waits for a short time period, to collect requests
from a number of dissatisfied nodes. These are the nodes of the
network that have detected they are inside clusters. It then cal-
culates the distance between the identified subspaces to decide
which peers belong in the same cluster. While exact such calcu-
lations can be computationally demanding, in practice, the reg-
istrat can use one of the many hashing algorithms to efficiently
do so. Finally, the registrat breaks the clusters by rewiring a
small number of nodes in each cluster. The allocated new neigh-
bors are either nodes that belong in different clusters, or, nodes
that have not send a rewiring request at all.

We will compare our proposed algorithms against the
Random Rewiring currently employed by many P2P protocols
(e.g., see [3], [4], and [34]). In this algorithm, each time a peer
receives a packet, with probability contacts the registrat and
asks to change a neighbor. The registrat randomly selects which
neighbor to change, and randomly allocates a new neighbor
from the active peer nodes.

D. Simulation Results

For our simulation results, we will start from randomly gener-
ated topologies similar to Fig. 7, which consists of 30 nodes con-
nected into three distinct clusters. The source is node 1 and be-
longs to the first cluster. The bottleneck links are indicated with
arrows (and thus indicate the underlying physical link structure).
Our first set of simulation results depicted in Fig. 8 show that the
subspaces within each cluster are very similar, while the sub-
spaces across clusters are significantly different, where we use
the distance measure defined in (2). These results indi-
cate that knowledge of these subspaces will allow the registrat
to accurately detect and break clusters (Algorithm 3).

Our second set of simulation results considers again topolo-
gies with three clusters: cluster 1 has 15 nodes and contains the
source, cluster 2 has also 15 nodes, while the number of nodes
in cluster 3 increases from 15 to 250. During the simulations,
we assume that the registrat keeps the nodes’ degree between 2
and 5, with an average degree of 3.5. All edges correspond to
unit capacity links.

We compare the performance of the three proposed algo-
rithms in Section VI-C with random rewiring. We implemented
these algorithms as follows. For random rewiring, every time a
node receives a packet it changes one of its neighbors with prob-
ability . For Algorithm 1, we use a parameter of ,
and check whether the non-innovative packets received exceed
this value every four received packets. For Algorithm 2, every
node checks the ratio of the dimensions of the intersection and
the joint space of subspaces received from each pair of neigh-
bors using the threshold value . Finally, for Algorithm 3,
we assume that nodes use the same criterion as in Algorithm 2
to decide whether they form part of a cluster, again with .
Dissatisfied nodes send their observed subspaces to the regis-
trat. The registrat assigns nodes and in the same cluster if

.
Table I compares all algorithms with respect to the average

collection time, defined as the difference between the time a peer
receives the first packet and the time it can decode all packets,
and averaged over all peers. All algorithms perform similarly,
indicating that all algorithms result in breaking the clusters. It
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Fig. 8. Simulation results for the topology in Fig. 7, with bottleneck link capacity values equal to 0.1 (left) and 1 (right).

TABLE I
AVERAGE COLLECTION TIME.

is important to note that the average collection time is in terms
of number of exchanges needed and does not account for the
delays incurred due to rewiring. We compare the number of such
rewirings needed next.

Fig. 9 plots the average number of rewirings each algorithm
employs. Random rewiring incurs a number of rewirings pro-
portional to the number of P2P nodes, and independently from
the underlying network topology. Our proposed algorithms on
the other hand, adapt to the existence and size of clusters. Al-
gorithm 3 leads to the smallest number of rewirings. Algorithm
2 leads to a larger number of rewirings, partly due to that the
new neighbors are chosen randomly and not in a manner that
necessarily breaks the clusters. The behavior of algorithm 1 is
interesting. This algorithm rewires any node that has received
more than noninnovative packets. Consider cluster 3, whose
size we increase for the simulations. If is small with respect to
the cluster size, then a large number of nodes will collect close
to noninnovative packets; thus a large number of nodes will
ask for rewirings. Moreover, even after rewirings that break the
cluster occur, some nodes will still collect linearly dependent
information and ask for additional rewirings. As cluster 3 in-
creases in size, the information disseminates more slowly within
the cluster. Nodes in the border, close to the bottleneck links,
will now be the ones to first ask for rewirings, long before other
nodes in the network collect a large number of noninnovative
packets. Thus once the clusters are broken, no new rewirings
will be requested. This desirable behavior of Algorithm 1 mani-
fests itself for large clusters; for small clusters, such as cluster 2,
the second algorithm for example achieves a better performance
using less reconnections.

Fig. 9. Average number of rewirings, for a topology with three clusters: cluster
1 has 15 nodes, cluster 2 has 15 nodes, while the number of nodes in cluster 3
increases from 20 to 250 as described in Table I.

VII. CONCLUSION

In this paper, we explored the properties of subspaces each
node collects in networks that employ randomized network
coding and found that there exists an intricate relationship
between the structure of the network and these properties.
This observation led us to utilize these relationships in several
different applications. As the first application, we studied the
conditions under which we can passively infer the network
topology during content distribution. We showed that these
conditions are not very restrictive and hold for a general class
of information dissemination protocols. As our second applica-
tion, which in some sense is the dual of the previous problem,
we focused on locating Byzantine attackers in the network.
We studied and formulated this problem and found that for
the single adversary, we can identify the adversary within an
uncertainty of two nodes. For the case of multiple adversaries,
we discussed a number of algorithms and conditions under
which we can guarantee identifiability. For our last application,
we investigated the relation between the bottlenecks in a log-
ical network and the subspaces received at a specific network
node. We leveraged our observations to propose decentralized
peer-initiated algorithms for rewiring in P2P systems to avoid
clustering in a cost-efficient manner, and evaluated our algo-
rithms through simulations results.

The applications studied in this paper demonstrate advantages
of using randomized network coding for network management
and control, which are additional to throughput benefits. These
are just a few examples and we believe that there exist a lot more
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applications where we can use the subspace properties devel-
oped in this study. We hope that these properties will become
part of a toolbox that can be used to develop applications for
systems that employ network coding techniques.

APPENDIX A
PROOFS

Proof of Lemma 1: First, let us fix a basis for . Then,
choosing vector uniformly at random from is equivalent
to choose an matrix uniformly at random from and
construct with respect to this fixed basis.

It is well known (e.g., see [35]) that the number of different
matrices with rank over is

equal to

so we can write

Then, using the Taylor series for ,
choosing , we can write

By setting , we are done.
Proof of Lemma 2: The probability that all vectors are

in the intersection is

which is of order provided that , i.e.,
.

Proof of Lemma 3: Let be the vectors chosen
randomly from to construct , i.e., .
Then, construct the sequence of subspaces , ,

as follows. First, set and then define for
recursively, . We also define

, . From Lemma 2, by choosing
, and we deduce that

with probability , unless
.

Now we consider two cases. First, if , then we have
or equivalently with

high probability, i.e., . Second, when
we have with probability .
From Lemma 1, we have w.h.p. So we
have

.
Combining these two cases we can write

w.h.p., which completes the proof.

Proof of Corollary 1: Let us define , where
. Using Lemma 3, and taking and

, we have

with probability . Now, we can write

where . Substituting
we obtain

Selecting properly and using Lemma 3 one more time, we get

where , which completes the
proof.

Proof of Theorem 1: To prove the theorem, it is sufficient
to show that (5) is valid for one specific with high probability.
This is sufficient because if is the probability that is in
general position with respect to each , , then the
probability that is in general position with the whole family
is lower bounded by .

Now by applying Lemma 3, we know that
which completes the proof.

Proof of Lemma 4: Here, we assume that is very large.
Then, in Corollary 3, we will derive a sufficient condition on the
largeness of .

Let be the node that has the longest path to the source .
Because of Definition 1, we can write . Then, we may
upper bound as follows:

where is the set of parents of . Now we can repeat the
above argument until we reach the source . So finally we have

which leads to the lemma’s assertion.
Proof of Lemma 5: Let us write
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where follows because and is a result of
Corollary 2. So we have which
results in , . By symmetry,
we have the second assertion of the lemma, namely,

, .
Now, it only remains to check . We will prove this by in-

duction. Obviously, . Suppose that we
have where ; then we show that it
also holds for .

We know that . To show that
, we proceed as follows. Let

then and .
We may decompose as where .
Then, note that and by using
Lemma 3, it can be shown that w.h.p.
So we conclude that which means . This
shows that where by induction assumption
we have and we are done.

Proof of Corollary 4: Because , by
Lemma 2, we have w.h.p. So as a result
we have . Now, because

we conclude that
w.h.p. By symmetry, we also deduce the other part

of the corollary.

APPENDIX B
ALGEBRAIC MODEL FOR SYNCHRONOUS NETWORKS

In this appendix, we employ an algebraic approach to ana-
lyze the dissemination protocol given in Algorithm II.1. This
approach is similar to [15] and [1], but differs in that we intro-
duce memory into the coding process.

We introduce memory as follows. Suppose we are interested
in finding the transfer function between the source and an arbi-
trary node . Let be a matrix with rows the packets
(vectors) that the source wants to transmit to the receivers. We
assume that . Let be a matrix with
rows the packets that pass through the edges of the network
at time . Let be the set of packets that node receives
at time . Similarly to [15], we will write state-space equations
that involve these vectors; however, we will ensure that, at each
time , coding at each node occurs across all the packets that the
node has received before time .

In every time-slot , the source injects packets into
the network that are random linear combinations of the original
source packets . These linear combinations can be captured as

, where is a random matrix. Inter-
mediate network nodes will transmit packets on their outgoing
edges depending on the network connectivity, and the state of
the dissemination protocol.

The network connectivity can be captured by the adja-
cency matrix of the labeled line graph of the graph , defined
as follows:

otherwise.

To model random coding over a field , we consider a sequence
of random matrices which conform to . That
is, the entries of these matrices have for
wherever and have random numbers from in all
other places.

The dissemination protocol dictates when a node can start
transmitting packets, according to its waiting time (equivalently,
when the outgoing edges of the node will have packets send
through them). To capture this, we will use the step function

otherwise

and define the diagonal matrix as

where is the waiting time for node . In this section, we as-
sume that the waiting times may have arbitrary values and we
do not restrict them according to Definition 1 .

Using the aforementioned definitions, the set of packets (vec-
tors) that each node receives in every time instant can
be written as follows:

(11)

where . In the above, is a matrix
which represents the connection of node to the rest of the
network. In the same way, matrix defines the
connection of node to the set of edges in the network.

It is worth noting that although (11) is written for the packets
transmitted on each edge, we can write the same set of equations
for the coding vectors.

Suppose we are interested in finding the output of such a
system at some time instant . We can rewrite the above equa-
tions by defining new matrices as follows. We can collect the
source random operations as

...

For the states of system, we define

...

We also define a new set of matrices which represent the input-
output relation. Using matrix , we define the following matrix:

. . .

For the connection of node , we define
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We define matrix which represent how the states are related
to each other

...
...

...
...

. . .

Finally, we use matrix that captures the time when trans-
missions start for each edge

. . .

Using the aforementioned definitions, we can rewrite (11) as
follows:

This equation can be solved to find the input-output transfer
matrix at time which results in

(12)

where . From the definition of matrix
, we know that it is a “strictly lower triangular matrix” which

means is nilpotent and we have . The same applies
for the matrix , namely, we have . So the
matrix has an inverse which is equal to

Finally, note that if the nodes do not wait before starting the
transmission ( ), then we will have

.
Proof of Theorem 2: For simplicity, in the following proof,

we assume that each edge of the network has capacity 1. Edges
with capacity more than 1 can be modeled by replacing them
with multiple edges of unit capacity.

From (12) the transfer matrix from to at time is equal to
. Knowing that the min-cut of node is , we choose

a set of incoming edges to such that there exist edge dis-
joint paths from to and find the input-output transfer matrix
just for this set of edges. Then, we can write

(13)

where and . Let de-

note for the entries of and denote for the entries of
. Every node in the network performs random linear net-

work coding so and (those that are not zero) are
chosen uniformly at random from .

From (13), we know that each entry of is a poly-
nomial of degree at most in variables and . For

where , we know that there ex-

ists a trivial solution for variables and (which simply
routes packets from to through the edge disjoint paths)
that results in

(14)

Note that by changing the routing solution (in fact by changing
the variables properly), we could change the place of iden-
tity matrix in (14) arbitrarily. We conclude that the determinant
of every submatrix of (which is a polynomial
of degree at most in variables and ) is not iden-
tical to zero. So by using the Schwartz–Zippel lemma [36] we
can upper bound the probability that is not full rank if
the variables and are chosen uniformly at random as
follows:

We can apply the same argument for consecutive time-
slots to show that

where

...

Now let us define the event as follows:

Then, we can write

where and .
This means that assuming is large enough we are sure that

with high probability each node receives innovative packets
per time slot for .
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