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Abstract—In this work we study an Arbitrarily Varying Chan-
nel (AVC) with quadratic power constraints on the transmitter
and a so-called “oblivious” jammer (along with additional AWGN)
under a maximum probability of error criterion, and no private
randomness between the transmitter and the receiver. This is in
contrast to similar AVC models under the average probability of
error criterion considered in [1], [2], and models wherein common
randomness is allowed [3] – these distinctions are important in
some communication scenarios outlined below.

We consider the regime where the jammer’s power constraint
is smaller than the transmitter’s power constraint (in the other
regime it is known no positive rate is possible). For this regime
we show the existence of stochastic codes (with no common
randomness between the transmitter and receiver) that enables
reliable communication at the same rate as when the jammer
is replaced with AWGN with the same power constraint. This
matches known information-theoretic outer bounds. In addition
to being a stronger result than that in [1] (enabling recovery of
the results therein), our proof techniques are also somewhat more
direct, and hence may be of independent interest.

I. INTRODUCTION

Aerial Alice is flying in a surveillance plane high over Hostile
Harry’s territory. She wishes to relay her observations of
Harry’s troop movements back to Base-station Bob over n
channel uses of an AWGN channel with variance σ2. Harry
obviously wishes to jam Alice’s transmissions. However, both
Alice’s transmission energy and Harry’s jamming energy are
constrained – they have access to energy sources of nP and
nΛ Joules respectively.1 Harry already knows what message
Alice wants to transmit (after all, he knows the movements of
his own troops), and also roughly how she’ll transmit it (i.e.,
her communication protocol/code, having recently captured
another surveillance drone) but he doesn’t know exactly how
she’ll transmit it (i.e., her codeword – for instance, Alice could
choose to focus her transmit power on some random subset of
the n channel uses). Further, since Alice’s transmissions are
very quick, Harry has no time to tune his jamming strategy to
Alice’s actual codeword – he can only jam based on his prior
knowledge of Alice’s code, and her message.

Even in such an adverse jamming setting we demonstrate
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1These are so-called peak power constraints – they must hold for all
codewords, rather than averaged over all codewords average power constraints.
If the peak power constraints are relaxed to average power constraints, for
either Alice’s transmissions, or Harry’s jamming (or both), it is known [3]
that standard capacity results do not hold – only “λ-capacities” exist.

that Alice can communicate with Bob at a rate equalling
1
2 log

(
1 + P

Λ+σ2

)
as long as P > Λ. Note that this equals the

capacity of an AWGN with noise parameter equal to Λ + σ2

– this means that no “smarter” jamming strategy exists for
Harry than simply behaving like AWGN with variance Λ. If
P < Λ no positive rate is possible since Harry can “spoof”
by transmitting a fake message using the same strategy as
Alice – Bob is unable to distinguish between the real and fake
transmissions2. Our result may be considered as an extension
of the observation made in the finite alphabet setting in [5,
Section V] to continuous alphabet and Gaussian noise.

A. Relationship with prior work

The model considered in this work is essentially a special type
of Arbitrarily Varying Channel (AVC) for which, to the best of
our knowledge, the capacity has not been characterized before
in the literature. The notion of AVCs was first introduced by
Blackwell et al. [7], to capture communication models wherein
channel have unknown parameters that may vary arbitrarily
during the transmission of a codeword. The case when both
the transmitter and the jammer operate under constraints (anal-
ogous to the quadratic constraints in this work) has also been
considered [4]. For an extensive survey on AVCs the reader
may refer to [6] and the references therein.

The class of AVCs over discrete alphabets has been studied
in great detail in the literature [6]. However, less is known
about AVCs with continuous alphabets. The bulk of the work
on continuous alphabet AVCs (outlined below in this section)
focuses on quadratically-constrained AVCs. This is also the
focus of our work.

It is important to stress several features of the model
considered in this work, and the differences with prior work:
• Stochastic encoding: To generate her codeword from her
message, Alice is allowed to use private randomness (known
only to her a priori, but not to Harry or Bob. This is in contrast
to the deterministic encoding strategies often considered in
the information theory/coding theory literature, wherein the
codeword is a deterministic function of the message.
• Public code: Everything Bob knows about Alice’s transmis-
sion a priori, Harry also knows.3 This is in contrast to the
randomized encoding model also considered in the literature

2Such a jamming strategy is equivalent to the more general symmetrizability
condition in the AVC literature (see, for instance [4], [5], and [6]).

3This requirement is an analogue for communication of Kerckhoffs’ Princi-
ple [8] in cryptography, which states that in a secure system, everything about
the system is public knowledge, except possibly Alice’s private randomness.
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(see for instance [3], [2], [9]), in which it is critical that Alice
and Bob share common randomness that is unknown to Harry.
• Message-aware jamming: The jammer already knows Alice’s
message. This is one important difference between our model,
and that of [1] and [2].
• Oblivious adversary: The jammer has no extra knowledge
of the codeword being transmitted than what he has already
gleaned from his knowledge of Alice’s code and her message.
This is in contrast to the omniscient adversary often considered
in the coding theory literature.

These model assumptions are equivalent to requiring public
stochastic codes with small maximum error of probability
against an oblivious adversary. Several papers also operate
under some of these assumptions, but as far as we know, none
examines the scenario where all these constraints are active.

The literature on sphere packing focuses on an AVC model
wherein zero-error probability of decoding is required (or,
equivalently, when the probability (over Alice’s codeword and
Harry’s jamming actions) of Bob’s decoding error is required
to equal zero). Inner and outer bounds were obtained by
Blachman [10]. Like several other zero-error communication
problems (including Shannon’s classic work [11]) characteri-
zation of the optimal throughput possible is challenging, and
in general still an open problem.4

Other related models include:
• The vector Gaussian AVC [14]. As in the “usual” vector
Gaussian channels, optimal code designs require “waterfilling”.
• The per-sequence/universal coding schemes in [15].
• The correlated/myopic jammers in [16], [17], wherein jam-
mers obtain a noisy version of Alice’s transmission and base
their jamming strategy on this.
• The joint source-channel coding, and coding with feedback
models considered by Başar [18], [19].
• Several other AVC variants, including dirty paper coding,
in [20].

We summarize some of the above works in Table I.
II. NOTATION AND PROBLEM STATEMENT

Throughout the paper, we use capital letters to denote random
variables and random vectors, and corresponding lower-case
letters to denote their realizations. Moreover, bold letters are
reserved for vectors and calligraphic symbols denote sets.
Random sets are represented by an extra star as superscripts.
Some constants are also denoted by capital letters.

We use N(a, σ2) to denote for a Gaussian random variable
with mean a and variance σ2. To denote a ball in an n-
dimensional real space of radius r which centered at the point
c ∈ Rn, we write Bn(c, r). In Table II, we summarize the
notation used in this paper.
A. Problem Statement

In this paper we study the capacity of a quadratic constrained
AVC with stochastic encoder under the attack of a malicious

4The literature on Spherical Codes (see [12] and [13] for some relatively
recent work) looks at the related problem of packing unit hyperspheres on
the surface of a hypershere. This corresponds to design of codes where each
codeword meets the quadratic power constraint with equality, rather than
allowing for an inequality.

Symbol Meaning
Ψ(i) Stochastic encoder applied to the message i
φ(Y ) Deterministic decoder
e(s, i) Error probability (over the stochastic encoder and the chan-

nel noise) for a fixed message i and jamming vector s
emax(s) Maximum (over messages) error probability for a fixed

jamming vector s
N(a, σ2) Gaussian random variable with mean a and variance σ2

Bn(c, r) A ball of radius r in Rn which centered at c ∈ Rn

Table II
COMMONLY USED SYMBOLS.

St. Enc. Dec.++i
t

n�0

îxn(i, t)

V nsn(i)

yn

Sunday, January 20, 13

Figure 1. A power constraint AVC with stochastic encoder. Here we assume
that the adversary has access to the transmitted message i but not to the
transmitted codeword xn(i, t).

adversary who knows the transmitted message but is oblivious
to the actual transmitted codewords.

Let the input and output of the channel are denoted by the
random variables X and Y where X,Y ∈ R. Then, formally,
the channel is defined as follows

Y = X + S + V, (1)

where S ∈ R is the channel state chosen by a malicious
adversary and V ∼ N(0, σ2) is Gaussian random variable.
Here we assume that the noise V is independent over different
uses of channel (1). The channel input is subjected to a peak
power constraint as follows

‖x‖2 =

n∑
i=1

x2
i ≤ nP, (2)

and the permissible state sequences are those satisfying

‖s‖2 =

n∑
i=1

s2
i ≤ nΛ. (3)

The problem setup is depicted pictorially in Figure 1.
A code with stochastic encoder (Ψ, φ) of block-length n

consists of a set of encoders that are denoted by a random
variable Ψ : {1, . . . ,M} 7→ Rn and a deterministic decoder
φ : Rn 7→ {0, . . . ,M} where 0 denote for an error and M ,
enR is the number of messages5. Each encoder ψ is constructed
by a set of codewords {x1, . . . ,xM} from Rn.

In this paper we focus on the maximum probability of error.
For a fixed jamming vector s, let us define the probability of
error given that the message i has been sent as follows

e(s, i) , PΨ,V [φ (Ψ(i) + s + V ) 6= i] . (4)

The maximum probability of error for a fixed s is defined as

emax(s) , max
i∈{1,...,M}

e(s, i). (5)

5For notational convenience we assume that enR is an integer.
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Error Criterion Capacity
Blachman [10] sups supψ [φ(ψ(i) + s + V ) 6= i] = 0 upper and lower bounds for the capacity

Hughes & Narayan [3] sups maxi P(Φ,Ψ),V [Φ(Ψ(i) + s + V ) 6= i] ≤ ε C = 1
2

log(1 + P
Λ+σ2 )

Csiszar & Narayan [1] sups
1
M

∑M
i=1 PV [φ(ψ(i) + s + V ) 6= i] ≤ ε C =

{ 1
2

log(1 + P
Λ+σ2 ) if P > Λ

0 otherwise.

Our Setup sups maxi PΨ,V [φ(Ψ(i) + s + V ) 6= i] ≤ ε C =

{ 1
2

log(1 + P
Λ+σ2 ) if P > Λ

0 otherwise.

Table I
COMPARISON OF EXISTING RESULTS ON QUADRATIC-CONSTRAINED AVCS WITH AWGN.

The capacity for this channel is now defined as:

Definition 1. The capacity C of an AVC with stochastic en-
coder under the quadratic transmit constraint P and jamming
constraint Λ is the supremum over the set of real numbers
such that for every δ > 0 and sufficiently large n there exist
codes with stochastic encoder (Ψ, φ) that satisfies the following
conditions. First, for the number of messages M encoded by the
code we have M > exp(n(C − δ)). Moreover, each codeword
satisfies the quadratic constraint (2) and finally for the code
we have limn→∞ sups:‖s‖2≤nΛ emax(s) = 0.

III. MAIN RESULTS

Theorem 1. The capacity of a quadratic-constrained AVC
channel under the maximum probability of error criterion with
transmit constraint P and jamming constraint Λ and additive
Gaussian noise of power σ2 is given by

C =

{
1
2 log(1 + P

Λ+σ2 ) if P > Λ,

0 otherwise.

Remark 1. The result of Theorem 1 matches the result of
stochastic encoder over discrete alphabets [21], [6, Theo-
rem 7], in which it is shown that for the average probability of
error criterion, using a stochastic encoder doesn’t increase the
capacity. Because the number of possible adversarial actions
here is uncountably large, the technique of [21], which relies
on taking a union bound over at most exponential-sized set of
possible adversarial actions, does not work.

Corollary 1. The capacity of a quadratic-constrained AVC
under the maximum probability of error criterion with transmit
constraint P and jamming constraint Λ is given by

C =

{
1
2 log(1 + P

Λ ) if P > Λ,
0 otherwise.

IV. PROOF OF MAIN RESULTS

In this section, we present the proof of Theorem 1 and its
corollary. Due to space constrain the proof of the converse
parts of Theorem 1 is relegated to [22, Section IV-B].

For the achievability part of Theorem 1, we claim that the
same minimum distance decoder proposed in [1] to achieve the
capacity for the average probability of error criterion, which is
given by

φ(y) =

{
i if ‖y − xi‖2 < ‖y − xj‖2, for j 6= i,
0 if no such i : 1 ≤ i ≤M exists,

(6)

also achieves the capacity for the maximum probability of error
criterion.

Note that in order to show the suprimum over s subject to
(3) of emax(s) goes to zero it is sufficient to show that for every
message i the suprimum over s subject to (3) of e(s, i) goes
to zero.

To communicate, Alice (the transmitter) randomly picks a
codebook C and fixes it. The codebook C comprises en(δ0+R)

codewords x(i, t), 1 ≤ i ≤ enR and 1 ≤ t ≤ enδ0 , each
chosen uniformly at random and independently from a sphere
of radius

√
nP . Then, the ith row of the codebook, i.e.,

{x(i, 1), . . . ,x(i, enδ0)}, is assigned to the ith message. In
order to transmit the message i, the encoder randomly picks a
codeword from the ith row of the codebook and sends it over
the channel.

Now, given that the message i has been transmitted, the
error probability e(s, i) of an stochastic code used over a
quadratic-constrained AVC under the use of the minimum
distance decoder (defined by (6)) equals

e(s, i) =PΨ,V [φ (Ψ(i) + s + V ) 6= i]

=PTPV
[
‖x(i, T ) + s + V − x(j, t′)‖2

≤ ‖s + V ‖2 for some i 6= j and t′
]

=PTPV
[
〈x(j, t′),x(i, T ) + s + V 〉 ≥ nP

+ 〈x(i, T ), s + V 〉 for some j 6= i and t′
]
. (7)

where T is a uniformly distributed random variable defined
over the set {1, . . . , enδ0}.
A. Achievability proof of Theorem 1

Here, we only focus on the case P > Λ; the capacity is zero
otherwise [22, Section IV-B]. The main step in proving the
achievability part of Theorem 1 consists in asserting the doubly
exponential probability bounds which is stated in Lemma 1.

Lemma 1. Let C∗ = {X(i, t)} in which 1 ≤ i ≤ exp(nR)
and 1 ≤ t ≤ exp(nδ0) be a random codebook comprises of
independent random vectors X(i, t) each uniformly distributed
on the n-dimensional sphere of radius

√
nP . First, fix a vector

s ∈ Bn(0,
√
nΛ). Then for every δ0 > δ1 > 0 and for

sufficiently large n if R < 1
2 log

(
1 + P

σ2+Λ

)
we have

PC∗
[
PTPV

[
〈X(j, t′),X(i, T ) + s + V 〉 ≥ nP

+ 〈X(i, T ), s + V 〉 for some j 6= i and t′
]
≥ Ke−nδ1

]
≤ exp

(
− (K log 2− 10) exp((δ0 − δ1)n)

)
.
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Proof sketch of Lemma 1: For the complete proof of
Lemma 1 refer to [22].

To derive the doubly exponential bound stated in the lemma,
we use Lemma 2. To this end let us define the functions ft for
1 ≤ t ≤ enδ0 as follows

ft (X(i, 1), . . . ,X(i, t)) , PV
[
〈X(j, t′),X(i, t) + s + V 〉

≥ nP + 〈X(i, t), s + V 〉 for some j 6= i and t′
]
.

Now, by using the functions ft, the probability expression in
the statement of lemma can be written as follows

PC∗
[

1

enδ0

enδ0∑
t=1

ft (X(i, 1), . . . ,X(i, t)) ≥ Ke−nδ1
]
. (8)

In order to bound (8) we use Lemma 2 where we have to bound
the expected values of the functions ft. To this end we can first
show that the vectors s, V , and X(i, t) are almost orthogonal
with high probability. By properly bounding the terms in the
expectation and using the above orthogonality conditions we
can finally derive the following bound for the expectation of
functions ft

EC∗ [ft(X(i, 1), . . . ,X(i, t))|X(i, 1), . . . ,X(i, t− 1)]

≤ 2 exp

(
−n− 1

2

δ2
2

‖s‖2 + σ2 + δ2

)
+ 2e−nξ + e−

nη2

2σ2Λ

+ 2e
n(R+δ0)+n−1

2 log

(
1− P−δ′2

P+Λ+σ2−δ2

)
,

where ξ = 1
2

[
1 + δ2−2η

σ2 −
√

1 + 2 δ2−2η
σ2

]
, δ′2 = 2

√
Pδ2−δ2

2 ,

and δ2 > 2η > 0. Now, as it is shown in [22] in more details,
by introducing δ1 and imposing the conditions δ2 ≤ ‖s‖2 +σ2,
δ2 > 2η + 4σ2

√
δ1, η >

√
2Λσ2δ1, δ2 >

√
4P (Λ+σ2)δ1

1−1/n , and
by choosing

R <
1− 1/n

2
log

(
1 +

P − δ′2
Λ + σ2 − δ2 + δ′2

)
− δ0 − δ1,

we can show that

EC∗ [ft(X(i, 1), . . . ,X(i, t))|X(i, 1), . . . ,X(i, t− 1)]

≤ 10 exp (−nδ1).

Then by applying Lemma 2 and choosing a = 10e−nδ1 and
τ = Ke−nδ1 we have

PC∗
[

1

enδ0

enδ0∑
t=1

PV
[
〈X(j, t′),X(i, t) + s + V 〉 ≥ nP

+ 〈X(i, t), s + V 〉 for some j 6= i and t′
]]
≥ Ke−nδ1

]
≤ exp

(
− exp(nδ0)

(
K log 2 exp(−nδ1)− 10 exp(−nδ1)

))
= exp

(
− (K log 2− 10) exp(n(δ0 − δ1))

)
.

By assuming δ0 > δ1 > 0 we obtain the desired doubly
exponential bound, hence we are done.

Our proof requires the following “martingale concentration
lemma” proven in [1, Lemma A1].

Lemma 2 ([1, Lemma A1]). Let X1, . . . , XL be arbi-
trary r.v.’s and fi(X1, . . . , XL) be arbitrary function with
0 ≤ fi ≤ 1, i = 1, . . . , L. Then if the conditions
E [fi(X1, . . . , XL)|X1, . . . , Xi−1] ≤ a hold almost surely for
i = 1, . . . , L, we have

P

[
1

L

L∑
i=1

fi(X1, . . . , Xi) > τ

]
≤ exp (−L(τ log 2− a)) .

Lemma 3 (Quantizing Adversarial Vector). For a fixed jam-
ming vector s, for sufficiently small ε > 0, and for every
δ0 > δ1 > 0, there exists a codebook C = {x(i, t)} of rate
R ≤ 1

2 log(1 + P
Λ+σ2 ) comprises of vectors x(i, t) ∈ Rn of

size
√
nP with 1 ≤ i ≤ enR and 1 ≤ t ≤ enδ0 which performs

well over the AVC defined in Section II for all s′ ∈ Bn(s, ε),
i.e., it satisfies

e(s′, i) = PTPV
[
〈x(j, t′),x(i, T ) + s′ + V 〉

≥ nP + 〈x(i, T ), s′ + V 〉 for some j 6= i and t′
]

< K exp(−nδ1) (9)

for all s′ ∈ Bn(s, ε).

Proof: For a particular s, instead of e(s, i) <
K exp(−nδ1), let us assume that the code C satisfies a stronger
condition

PTPV
[
〈x(j, t′),x(i, T ) + s + V 〉 ≥ nP

− 2ε
√
nP + 〈x(i, T ), s + V 〉 for some j 6= i and t′

]
< K exp(−nδ1). (10)

Then it can be verified that for all s′ ∈ Bn(s, ε) the code
C satisfies (9). To show this let s′ = s + ρu where u
is an arbitrary unit vector and ρ ∈ [−ε, ε]. Hence for all
s′ ∈ Bn(s, ε) we can write

e(s′, i) = PTPV
[
〈x(j, t′),x(i, T ) + s + V 〉+ ρ〈x(j, t′),u〉

≥ nP + 〈x(i, T ), s + V 〉
+ ρ〈x(i, T ),u〉 for some j 6= i and t′

]
≤ PTPV

[
〈x(j, t′),x(i, T ) + s + V 〉+ ε

√
nP

≥ nP + 〈x(i, T ), s + V 〉
− ε
√
nP for some j 6= i and t′

]
(a)
≤ K exp(−nδ1),

where (a) follows from (10).
Now, in Lemma 1 we can use the stronger error requirement

(10) to show that there exists a code which satisfies (10). This
stronger requirement results in a rate loss, but as ε goes to zero
the rate loss due to that vanishes. By the above argument, we
know that this code satisfies (9) for all s′ ∈ Bn(s, ε) and we
are done.

Finally, Lemma 4 shows the existence of a good codebook
for the quadratic constrained AVC problem with stochastic
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encoder which have been introduced in Section II-A and hence
completes the proof of Theorem 1.

Lemma 4 (Codebook Existence). For every δ0 > δ1 > 0 and
n ≥ n0(δ0, δ1) there exist a codebook C = {x(i, t)} of rate
R ≤ 1

2 log(1 + P
σ2+Λ ) comprises of vectors x(i, t) ∈ Rn of

size
√
nP with 1 ≤ i ≤ enR and 1 ≤ t ≤ enδ0 such that for

every vector s and every transmitted message i we have

e(s, i) = PTPV
[
〈x(j, t′),x(i, T ) + s + V 〉

≥ nP + 〈x(i, T ), s + V 〉 for some j 6= i and t′
]

< K exp(−nδ1). (11)

Proof: For any fixed codebook C = {x(i, t)}, let us
explicitly mention to the dependency of the error probability
on C by defining eC(s, i) , e(s, i). Then in order to prove the
assertion of lemma we can equivalently show that

lim inf
n→∞

PC∗
[
∀s,∀i eC∗(s, i) < Ke−nδ1

]
> 0.

However, by using Lemma 3, it is not necessary to check for
all s but only for those belonging to an ε-net6 χn that covers
Bn(0,

√
nΛ). Hence, we can write

PC∗
[
∀s ∈ χn,∀i eC∗(s, i) < Ke−nδ1

]
= 1− PC∗

[
∃s ∈ χn,∃i eC∗(s, i) ≥ Ke−nδ1

]
(a)
≥ 1−

∑
s∈χn

enR∑
i=1

PC∗
[
eC∗(s, i) ≥ Ke−nδ1

]
,

where (a) follows from the union bound.
Now, note that to bound |χn| one might cover Bn(0,

√
nΛ)

by a hypercube of edge size 2
√
nΛ; see Figure 2. So we can

write |χn| ≤
(

2
√
nΛ
ε

)n
. Then, by using Lemma 1 we have

PC∗
[
∀s ∈ χn,∀i eC∗(s, i) < Ke−nδ1

]
≥ 1−

(
2
√
nΛ

ε

)n
× enR × exp

(
−K ′en(δ0−δ1)

)
,

where, assuming δ0 > δ1, the right hand side goes to 1 as n
goes to infinity and this completes the proof of lemma.
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