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Abstract—Recent empirical results have demonstrated that
generalized belief propagation (GBP) can be used to closely
estimate the capacity of certain 2D runlength-limited constraints.
We provide a partial analytical validation of these observations
by showing that GBP yields a lower bound on the partition
function of 2D Ising models with restricted grid size. While
previous papers have proved that belief propagation (BP) can
be used to obtain a lower bound on the partition function of 2D
Ising models, this paper is the first work that analyzes GBP-based
partition function approximations of 2D Ising models.

I. INTRODUCTION

The partition function Z of a graphical model G encodes
important structural information about G, and so it is of interest
to compute it. However, computing Z is in general intractable,
i.e., it can shown to be a #P-hard problem in general [1].
Therefore computationally efficient methods to approximate
Z are of interest.

The negative logarithm of Z, i.e., − log(Z), has a nice
variational interpretation, namely, it equals the minimum of
a function called the Gibbs free energy function. Although
minimizing the Gibbs free energy function is not tractable in
general, this variational interpretation of − log(Z) nevertheless
suggests that approximations of − log(Z) can be obtained
by computing the minimum of suitably chosen functions that
approximate the Gibbs free energy function.

A popular approach for approximating the Gibbs free energy
function is the Bethe free energy function. The Bethe partition
function ZB is then defined such that − log(ZB) equals the
minimum of the Bethe free energy function. In the following,
we will also use − log

(
ZBP({bi, ba})

)
, which is given by the

evaluation of the Bethe free energy function at the beliefs given
by a fixed point of belief propagation (BP). As was shown by
Yedidia et al. [2], stationary points of the Bethe free energy
function correspond to fixed points of BP, and so ZB can be
equal to ZBP

(
{bi, ba}

)
, but in general ZB > ZBP

(
{bi, ba}

)
.

Yedidia et al. discussed in [2] also another technique for
approximating the Gibbs free energy function. Namely, they
formulated a so-called region-based graph R for a given
graphical model (there are different ways to define such a
region-based graph) and then associated a region-based free
energy function with R. Naturally, ZR is then defined such
that − log(ZR) equals the minimum of the region-based free
energy function. In the paper [2], Yedidia et al. devised also an
algorithm, called generalized belief propagation (GBP), whose

main property is that stationary points of the region-based
free energy function correspond to fixed points of GBP. In
the following, − log

(
ZR,GBP({bR})

)
will be defined to be

the region-based free energy function evaluated at the beliefs
given by a fixed point of GBP. Clearly, ZR > ZR,GBP

(
{bR}

)
.

Mathematical tools in the literature for analyzing the ap-
proximation accuracy given by ZB and ZBP

(
{bi, ba}

)
include

loop series expansions (e.g., [3], [4], [5]) and graph covers
(e.g., [6], [7]). In particular, these tools have been used to show
that Z > ZB > ZBP

(
{bi, ba}

)
for log-supermodular graphical

models (which includes the class of attractive graphical mod-
els) [4], [7]. Recently, the paper [8] reproduced this result for
attractive graphical models by convex analysis.

In contrast, there is not yet an analytic understanding of the
approximation accuracy given by ZR and ZR,GBP

(
{bR}

)
. To

the best of our knowledge, so far only a heuristic method to
approximate ZR,GBP

(
{bR}

)
/Z has been proposed; see [9].

However, approximating Z by ZR,GBP

(
{bR}

)
can potentially

outperform approximating Z by ZBP

(
{bi, ba}

)
, as was re-

cently shown by Sabato and Molkaraie [10]. Namely, they
empirically demonstrated that ZR,GBP

(
{bR}

)
can be used to

approximate very well the capacity of certain 2D runlength-
limited constraints, whereas ZBP

(
{bi, ba}

)
in general yielded

poorer approximations. More empirical results showing that
GBP outperforms BP in terms of estimating marginals can be
found in [11], [12], [13], [14].

This paper aims to be the first step to understanding
analytically how well ZR and ZR,GBP

(
{bR}

)
can be used

to estimate the partition function Z of a graphical model. In
particular, motivated by the good performance observed in the
class of models simulated by Sabato and Molkaraie, we focus
on binary pairwise graphical models with homogeneous local
functions (also known as the Ising model [15]). A further
advantage of this class of models is the relative ease with
which they can be analyzed.

Our main result is that (see Sections III and IV)

Z > ZR = ZR,GBP

(
{bR}

)
for the 2D Ising model of restricted size and a suitably chosen
region-based graph R — this provides a partial analytical
validation for the behavior observed by Sabato and Molkaraie.
Our proof approach is inspired by [4] and [7]:
• In a first step, the results in [7] can be used to show that

the 2D Ising model can always, thanks to the bipartiteness
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Fig. 1. (a) A factor graph representing the 4 × 4 Ising model: circles are
variable nodes; black squares are factor nodes. (b) The region graph R4×4

for the 4×4 Ising model.

of the underlying grid and thanks to the homogeneous
nature of the pairwise potentials, be turned into a log-
supermodular graphical model. This transformed graph-
ical model has not only the property that the partition
function is unchanged, but also the property that the GBP-
fixed-point-based approximation of the partition function
is unchanged.

• In a second step, we analyze the approximation of Z
by ZR,GBP

(
{bR}

)
. However, it turns out to be diffi-

cult to directly extend the analysis which shows Z >
ZBP

(
{bi, ba}

)
for log-supermodular graphical models. In

order to nevertheless make progress and to obtain our
main result, suitable reparameterizations of the relevant
expressions are used; these reparameterizations have a
somewhat similar flavor as the loop series expansion
expressions in [4].

This paper is organized as follows. We give the background
of region-based approximations and GBP in Section II. We
state our main result and the proof technique in Section III.
The technical details regarding the proofs of the lower bounds
are elaborated in Section IV. Finally, we state some remarks in
Section V. Due to space restrictions, the proofs of Theorems 2
and 3 will only be sketched and the proofs of Lemmas 1 and 4,
Claims 5-8, and Theorems 9 and 10 will be omitted. They
appear in an extended version that is available at [16].

II. REGION-BASED APPROXIMATIONS AND GBP

A factor graph G = (V,F) [17] is a bipartite graph
containing a set of variable nodes V and factor nodes F .
It represents a function f(x) which admits a factorization∏

a∈F fa(xa), where xa collects the variables in x whose
corresponding variable nodes in V are the neighbors of the
factor node a. Given a factor graph G, we are interested in the
probability measure given by

p(x) ,
1

Z
f(x) =

1

Z

∏
a∈F

fa(xa),

where the partition function Z is defined to be

Z ,
∑
x

f(x) =
∑
x

∏
a∈F

fa(xa).

As explained in the introduction, for a given graphical
model one can formulate a region graph R [2]; ZR and

ZR,GBP

(
{bR}

)
can then be used to approximate Z. In such a

region graph R, vertices correspond to regions, edges corre-
spond to the interrelationship between the regions associated
with the vertices, and a “counting number” is associated with
every vertex. With a slight abuse of notation, we will use R to
denote both the graph and the set of vertices, and we will use
R, R ∈ R, to denote both a region and the vertex associated
with that region. Moreover:
• A region R is defined to be a subset of factor nodes from
F , along with the neighboring variable nodes from V in
the factor graph G. In the following FR , F ∩R.

• Two vertices R1 and R2 are connected by a directed edge
from R1 to R2 only if R2 is a subset of R1. We call R1

the parent of R2, and R2 the child of R1.
• A counting number cR is associated with the vertex R.

The choice of regions and counting numbers should satisfy
the following definition.

Definition 1 (Valid region-based approximations):
A region graph R with counting numbers cR, R ∈ R,
is called valid when for every factor node a ∈ F and every
variable node i ∈ V in the factor graph G, the counting
numbers of regions that include a particular factor node a, or
a particular variable node i, sum to 1. �

We assume all valid region graphs under discussion are
obtained by the cluster variation method. Namely, given a
set of distinct large regions, the cluster variation method
constructs a generation of regions from all possible largest
intersections between the large regions. The method iteratively
constructs the next generation of regions from all possible
largest intersections between the parents. The counting number
cR of a region R is set to be 1 −

∑
S∈A(R) cS , where A(R)

is the set of all regions which contain region R. In the case
of the 2D Ising model of size m × n with xi ∈ {0, 1} for
all i ∈ V , pairwise and homogeneous local functions (every
factor node connects exactly two neighboring variable nodes,
and all local functions have the same mapping), we choose the
large regions to be all 2× 2 subgraphs, and call the resulting
region graph Rm×n. The counting numbers of all regions in
Rm×n will therefore be either +1 or −1. As an illustrative
example, Fig. 1(b) shows the region graph for the factor graph
of the 4× 4 Ising model as shown in Fig. 1(a).

Let pR(xR) be a marginal probability by summing all p(x)
over the variables that are not in R. A region-based approx-
imation is a set of beliefs (locally consistent probabilities){
bR(xR) : R ∈ R

}
, where bR(xR) is an estimate of the true

pR(xR). The following outlines region-based approximations
and GBP.

Definition 2 (Region-based approximations): For any re-
gion R, the region average energy function UR, the region
entropy function HR, and the region free energy function FR

are defined to be, respectively,

UR(bR) , −
∑
xR

∑
a∈FR

bR(xR) log fa(xa),

HR(bR) , −
∑
xR

bR(xR) log bR(xR),
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FR(bR) , UR(bR)−HR(bR).

The region-based average energy function UR, the region-
based entropy function HR, and the region-based free energy
function FR are defined to be, respectively,

UR
(
{bR}

)
,
∑
R∈R

cRUR(bR),

HR
(
{bR}

)
,
∑
R∈R

cRHR(bR),

FR
(
{bR}

)
, UR({bR})−HR

(
{bR}

)
.

The region-based partition function approximation ZR and
probability approximations {bR} are defined via

− logZR , min
{b′R}

FR
(
{b′R}

)
and {bR} , arg min

{b′R}
FR
(
{b′R}

)
.

�
The variant of GBP that we will use is called the parent-to-

child algorithm [2]. Eventually, GBP outputs a set of beliefs
{bR} at convergence as the estimated marginal probabilities
of {pR}. Hereafter, we refer to {bR} as the GBP output. Note
that such a {bR} is a stationary point of the region-based free
energy function. Although in general GBP may not guarantee
that {bR} minimizes FR

(
{bR}

)
, we can take ZR,GBP

(
{bR}

)
as an approximation of ZR (and with that as an approximation
of Z), whereby − logZR,GBP({bR}) , FR

(
{bR}

)
.

III. APPROXIMATION RATIO

Our first step to analyze the approximation ratio between Z
and ZR,GBP({bR}) is to derive (1) further below, which is a
general expression in terms of beliefs. The steps towards this
can be summarized by Lemma 1. Although similar lemmas
are known for BP [18], for GBP they appear to be novel.

Lemma 1: For any {bR} that is a GBP output at conver-
gence, it holds that∏

a∈F
fa(xa) = ZR,GBP({bR})

∏
R∈R

(
bR(xR)

)cR
,

Z

ZR,GBP

(
{bR}

) =
∑
x

∏
R∈R

(
bR(xR)

)cR
. (1)

In the following, we focus on the 2D Ising model with a
region graph R = Rm×n. Since the counting numbers of
regions in Rm×n satisfy the sufficient condition for convexity
given by Pakzad and Anantharam [19, Theorem 3], the region-
based free energy FR({bR}) is strictly convex on {bR}.
Hence, if GBP converges, it must converge to the unique
global minimum point of the region-based free energy, which
implies ZR = ZR,GBP

(
{bR}

)
.

A second observation is that the the grid underlying the 2D
Ising model is bipartite, and so observations by Ruozzi [7] can
be used to reformulate the graphical model so that all local
functions are log-supermodular.

This allows us to obtain the following lower bounds. The
proofs are developed in the next section.

Theorem 2: For the 2D Ising models of size no larger than
5× 5, Z > ZR.

…

…

(a)

1

2 5 3

4

(b)

Fig. 2. (a) An n×2 subgraph on which Θ can be defined. (b) The 3×3 Ising
model with 9 variables represented by nodes and local functions represented
by edges.

Theorem 3: For the 2D Ising model of size 3×n or n× 3,
where n is a positive integer, Z > ZR.

IV. PROOF SKETCH OF THEOREMS 2 AND 3

In this section, we will first define some useful objects
and develop our main tools (Claims 5–8) that we will use
in our analysis for the 2D Ising model. With the help of these
tools we show that log-supermodular beliefs have favorable
reparameterizations. Second, we will study the 3×3 and 4×4
Ising models and present a useful pictorial representation for
the necessary computations. Finally, we will sketch the proofs
of Theorems 2 and 3.

A. Tools

Our main tools are based on the following objects. Let us
define the function s with s(0) , −1 and s(1) , +1. For any
angular subgraph (i, j, k), where i is the node connecting j
and k (e.g., (5,1,2) in Fig. 2(b)), let

∆i,j,k(xi),bi,j,k(xi00)bi,j,k(xi11)−bi,j,k(xi01)bi,j,k(xi10),

where bi,j,k(xixjxk) is a marginal probability of a 2×2 region.
Moreover, let Θ be a function defined on either a 2 × n or
n × 2 rectangular subgraph (i1, . . . , in, j1, . . . , jn), of which
the indices of the 4 corner variables are i1, in, j1, and jn. For
example, the labeling of variables for a 2× n subgraph is as
shown in Fig. 2(a). With this, Θ is defined to be

Θi1,in,j1,jn(xj1 , xj2 , . . . , xjn)

,
∑

xi1 ,...,xin

(
s(xi1)s(xin)

bin,jn(xinxjn)
·

n−1∏
k=1

bik,ik+1,jk,jk+1
(xikxik+1

xjkxjk+1
)

bik,jk(xikxjk)

)
.

The upcoming Claim 5 shows a reparameterization that
gives a hint of how ∆i,j,k(xi) comes into our analysis.
For log-supermodular graphical models, ∆i,j,k(xi) is non-
negative by Lemma 4. Claims 6 to 8 then show that for such
models, Θi1,i2,j1,j2(xj1 , xj2) and Θi1,i3,j1,j3(xj1 , xj2 , xj3) are
also non-negative. (For Claims 6 and 7, note that if indices are
not specified, b(·) , bi,j,k,l(xi, xj , xk, xl), where (i, j, k, l) are
the indices of variables in a 2×2 square subgraph. For a binary
value assignment α, the expression ᾱ means flipping the bit.)

Lemma 4: For Rm×n, if both the local functions and the
initial messages are log-supermodular (e.g., uniform mes-
sages), GBP messages preserve log-supermodularity upon
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message updates. Moreover, GBP-based beliefs are also log-
supermodular.

Claim 5: It holds that
b(xixjxk)b(xi)

b(xixj)b(xixk)
= 1 +

s(xj)s(xk)∆i,j,k(xi)

b(xixj)b(xixk)
. (2)

Claim 6: For all (α, β, γ, δ) ∈ {0, 1}4, if the local functions
are log-supermodular, it holds that

b(αβγδ)b(αβ̄γ̄δ)− b(αβ̄γδ)b(αβγ̄δ) = 0, (3)
b(ααγδ)b(ᾱᾱαδ)− b(αᾱγδ)b(ᾱααδ) > 0. (4)

Claim 7: For all (γ, δ) ∈ {0, 1}2, if the local functions are
log-supermodular, it holds that Θi,j,k,l(γ, δ) > 0.

Claim 8: For all (xj1 , xj2 , xj3) ∈ {0, 1}3, if the
local functions are log-supermodular, it holds that
Θi1,i3,j1,j3(xj1 , xj2 , xj3) > 0.

B. Motivating Examples: 3× 3 and 4× 4 Ising Models

Theorem 9: For the 3× 3 Ising model with the labeling of
variables as shown in Fig. 2(b), the ratio Z/ZR,GBP is given
by

1 + b5(0)

(
∆5,1,2(0)

b5,1(00)b5,1(01)

)4

+ b5(1)

(
∆5,1,2(1)

b5,1(10)b5,1(11)

)4

.

Because all terms are non-negative it holds that Z > ZR,GBP.

Theorem 10: For the 4 × 4 Ising model with the labeling
of variables as shown in Fig. 1(a), we have Z > ZR,GBP.

C. Pictorial Representation

We start by noting that the ratio Z/ZR,GBP is given by
a sum of fractions whose numerator and denominator are
products of beliefs. We can represent the fractions by the
starting picture in Fig. 4, which is essentially a simplified
version of Fig. 1(b) (without drawing the edges). The position
and the shape of a component state unambiguously which
belief it is. If a component is shaded, it appears in the
denominator; otherwise, it appears in the numerator. The tools
provided in Claims 5, 7, and 8 can be represented as shown
in Fig. 3. For Claim 5, we represent ∆i,j,k(xi) by a triangle,
and s(xi) by an asterisk. As before, the positions of the
components specify which variables they are defined on. For
compactness of the representation, we use a dashed line to
represent “plus 1”. To represent Θ in Claims 7 and 8, we
draw a boundary. Then the computation in Fig. 4 produces a
set of correction terms. For example the computations for the
correction terms C1 and C2 can be illustrated in Figs. 5 and 6.

The pictures visually conceptualize the idea that to prove
ZR,GBP as a lower bound of Z, we choose a set of components
(which we will call the backbone in the proof of Theorem 2
given in the next subsection) such that the sum over all con-
figurations of the product of the components in this set sums
to 1; and to claim that all correction terms are non-negative,
we eliminate the asterisks that appear in the outermost of
pictures for the correction terms. Heuristically, the asterisks
representing the functions s(xi) can be understood as the

*	  

*	  

*	   *	   *	   *	  

= 1 +	  
(a)	  

(b)	   (c)	  

=	  
*	  

*	  

Fig. 3. (a) A pictorial representation of Claim 5. (b) A pictorial rep-
resentation for Θi1,i2,j1,j2 (xj1 , xj2 ). (c) A pictorial representation for
Θi1,i3,j1,j3 (xj1 , xj2 , xj3 ).

*	  

*	  

*	  

*	  

*	  

*	  

*	  

*	  

*	  

*	  

*	  

*	  

*	  

*	  

*	  

*	  

*	  

*	  

*	  

*	  

*	  

*	  

*	  

*	  
C1	   C2	   C3	   C4	   C5	  

(a)	   (b)	  

*	  

*	  

*	  

*	  

*	   *	  

*	   *	  

Fig. 4. The reduction for the 4 × 4 Ising model: (a) by Claim 5 we
reparameterize the corner subgraphs; (b) polynomial expansion gives 1 (upon
marginalizing over all variables) plus a set of correction terms {Ci}.

*	  

*	  

*	  

*	  

*	  

*	  

*	  

*	  

*	  

*	  

*

*	  

*	  

*	  

(a)	   (b)	  

(c)	  

(d)	  

Fig. 5. The computation for the correction term C1: (a) we marginalize over
the variables; (b) we group the beliefs such that we can apply reparameteri-
zation in the next step; (c) we reparameterize the corner subgraphs; (d) upon
polynomial expansion, the only non-vanishing term is the one without any
asterisks s(xi) defined on a variable which no other components are defined
on.

*	  

*	  

*	  

*	  

*	  

*	  

*	  

*	  

*	   *	  

*	  *	  

*	   *	  

*	  *	  
*

*	  

*	  

*	  

*	   *	  

*	   *	  

(a)	  

(c)	  

(b)	  

(d)	  
*	   *	  

*	   *	  

(e)	  

Fig. 6. The computation for the correction term C2: (a) we marginalize over
the variables; (b) we group the beliefs such that we can apply reparameteri-
zation in the next step; (c) we reparameterize the corner subgraphs; (d) upon
polynomial expansion, the only non-vanishing term is the one without any
asterisks s(xi) defined on a variable which no other components are defined
on; (e) we can further decompose the big sum and extract Θ.
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*	  

(c)	  
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Fig. 7. The reduction for the 5× 5 Ising model: we start with a picture that
corresponds to (1); (a) we proceed to step 2, and reparameterize all corner
subgraphs; (b) the second iteration of Step 2; (c) the third iteration of Step 2.

correlations between the beliefs. In the analysis for the 4× 4
Ising model, we can see that the correlations never spread into
the inner regions. This idea can be extended to the proof of
Theorem 2. On the other hand, symmetry of beliefs in 2D
Ising models of particular sizes gives Theorem 3.

D. Proof Sketch of Theorem 2

We prove by reduction with the following decomposition
steps. An example for the 4 × 4 and 5 × 5 Ising model is
given in Fig. 4 and 7.

1) Reparameterize all corner subgraphs by Claim 5. The
part containing the remaining components which have
not been reparameterized is called the backbone (see
Fig. 4(a)).

2) Expanding the sum of products in the approximation
ratio into a polynomial produces the backbone itself
plus a set of correction terms. We can show that all
the correction terms are non-negative (see Fig. 4(b)).

3) Marginalize the backbone. If the backbone does not sum
to 1, repeat step 1 (see Fig. 7) on the backbone.

A correction term vanishes if it contains an asterisk defined on
a variable which no other components are defined on. All as-
terisks in the non-vanishing correction terms can be eliminated
by either writing the parts as Θ (see Fig. 6(e)), or canceling
with new asterisks that can be produced by applying Claim 5
on un-reparameterized corner subgraphs (see Figs. 5(c)&(d)).
The correction terms after eliminating all the asterisks
can be written in terms of ∆i,j,k(xi), Θi1,i2,j1,j2(xj1 , xj2),
and Θi1,i2,i3,j1,j2,j3(xj1 , xj2 , xj3), which are non-negative by
Lemma 4 and Claims 7 and 8. Therefore, we conclude that the
correction terms are non-negative. The backbone can always
be reduced to a tree or a belief of a single region, which
sums to 1; otherwise there exists a corner that allows for
reparameterization and further reduction.

E. Proof Sketch of Theorem 3

The proof approach is the same as that of Theorem 2.
We make the same decomposition steps, and obtain that the
approximation ratio equals 1 plus a set of correction terms.
The correction terms can be written in terms of ∆ and Θ2

(the power 2 is due to symmetry between pairs of beliefs),
which are non-negative. Hence all correction terms are non-
negative.

V. DISCUSSION

Numerical results show that Z > ZR (and in fact, Z ≈
ZR) continues to hold for 2D Ising models beyond the cases

covered in Theorems 2 and 3. However, new proof techniques
seem to be required since numerical computations show that
some inequalities that were used to prove Theorems 2 and 3
do not hold anymore. A natural and further conjecture would
be that GBP gives a lower bound on the partition function
for a log-supermodular graphical model and the region graph
satisfying [19, Theorem 3].
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