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Abstract—We consider load balancing in a network of caching
servers delivering contents to end users. Randomized load
balancing via the so-called power of two choices is a well-
known approach in parallel and distributed systems that reduces
network imbalance. In this paper, we propose a randomized
load balancing scheme which simultaneously considers cache size
limitation and proximity in the server redirection process.

Since the memory limitation and the proximity constraint
cause correlation in the server selection process, we may not
benefit from the power of two choices in general. However, we
prove that in certain regimes, in terms of memory limitation
and proximity constraint, our scheme results in the maximum
load of order Θ(log log n) (here n is the number of servers and
requests), and at the same time, leads to a low communication
cost. This is an exponential improvement in the maximum load
compared to the scheme which assigns each request to the nearest
available replica. Finally, we investigate our scheme performance
by extensive simulations.

Keywords
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quest Routing, Load Balancing, Communication Cost, Balls-
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I. INTRODUCTION

A. Problem Motivation

Advancement of technology leads to the spread of smart

multimedia-friendly communication devices to the masses

which causes a rapid growth of demands for data commu-

nication [1]. Although Telcos have been spending hugely

on telecommunication infrastructures, they cannot keep up

with this data demand explosion. Caching predictable data in

network off-peak hours, near end users, has been proposed as

a promising solution to this challenge. This approach has been

used extensively in content delivery networks (CDNs) such as

Akamai, Azure, Amazon CloudFront, etc. [2], [3], and mobile

video delivery [4]. In this approach, a cache network is usually

referred to as a set of caching servers that are connected over

a network, giving content delivery service to end users.

In cache networks, load balancing is one of the most

important challenges when assigning requests to servers. This

assignment strategy is implemented either at network-side

or client-side. In the first approach there is a centralized

authority which maps requests to servers, while balancing out

This research was in part supported by a grant from IPM.

the load. This authority employs network status information

to optimally allocate requests to servers, which often involves

complex algorithms. However, in the latter, the clients choose

their favorite servers in a distributed fashion. In this paper we

focus on the distributed server selection approach.

Randomized load balancing via the so-called “power of

two choices” is a well-investigated paradigm in parallel and

distributed settings [5], [6], [7], [8]. In this approach, upon

arrival of a request, the corresponding user will query about

current load of two independently at random chosen servers,

and then allocates the request to the least loaded server.

Berenbrink et al. [9] showed that in this scheme after allocating

m balls (requests, tasks, ...) to n bins (servers, machines, ...)

the maximum number of balls assigned to any bin, called maxi-
mum load, is at most m/n+O(log log n) with high probability.

This only deviates O(log logn) from the average load and the

deviation depends on the number of servers. However, in many

settings, selecting any two random servers might be infeasible

or costly. For example proximity principle in CDNs for server

selection is essential to reduce communication cost; i.e., each

request should be redirected to a nearby server.

Considering this constraint, Kenthapadi and Panigrahi [10]

proposed a model where n bins are organized as a d-regular

graph. Corresponding to each ball, a node is chosen uniformly

at random as the first candidate. Then, one of its neighbours

is chosen uniformly at random as the second candidate and

the ball is allocated to the one with the minimum load. Under

this assumption, they proved that if the graph is sufficiently

dense (i.e., the average degree is nΩ(log logn/ logn)), then after

allocating n balls the maximum load is Θ(log log n) with high

probability. Although the model fairly considers the proximity

principle, due to cache limitations it cannot be directly applied

in cache networks.

In summary, the proximity principle can be in tension with

load balancing in many situations, as nearby users may be

congested. This leads to a fundamental trade-off between the

maximum load and the communication cost. Hence, designing

a distributed assignment strategy to handle this trade-off

optimally is a central and challenging goal in cache networks.

2017 IEEE International Parallel and Distributed Processing Symposium

1530-2075/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPS.2017.24

1068



B. Problem Setting and Our Contributions

While many authors have used the idea of power of two

choices in server-selection algorithms, theoretical foundations

of this phenomena in the context of cache networks with

communication cost, has not yet been investigated. In this

paper, we consider a general cache network model that entails

basic characteristics of many practical scenarios. We consider

a grid network of n servers, each equipped with a cache of size

M . Also there are n sequential file requests, from a library

of size K, distributed among servers uniformly at random.

Let us assume a popularity distribution P = {p1, . . . , pK}
for the library. We assume cache placement at each server

is proportional to this popularity distribution. Every server

either serves its requests or redirects them (via an assignment

scheme) to other nodes which have cached the files. We define

the maximum load of an assignment scheme as the maximum

number of allocations to any single server after assigning all

requests. The communication cost is the average number of

hops required to deliver requested file to its request origin.

In the simplest assignment scheme, each request arrived at

every server should be dispatched to the nearest file replica.

This scheme results in the minimum communication cost,

while ignoring maximum load of servers. We show that, for

every constant 0 < α < 1/2, if K = n, M = nα, and

P is a uniform distribution, this scheme will result in the

maximum load in the interval [Ω(log n/ log log n), O(log n)]
with high probability2 (w.h.p.). Moreover, for every constant

0 < ε < 1, if K = n1−ε and M = Θ(1), then the maximum

load is Θ(log n) w.h.p. We also investigate the communication

cost occurred in this scheme for Uniform and Zipf popularity

distributions. In particular, we derive the communication cost

of Θ(
√

K/M) for the Uniform distribution.

In contrast, we propose a new scheme which considers both

maximum load and communication cost objectives simulta-

neously. For each request, this scheme chooses two random

candidate servers that have cached the request while putting

a constraint on their distance r to the requesting node (i.e.,

the proximity constraint). Due to cache size limitation and the

proximity constraint, current results in the balanced allocation

literature cannot be carried over to our setting. Basically, we

show that here the two chosen servers will become correlated

and this might diminish the power of two choices. Since this

correlation arises from both memory limitation and proximity

principle, the main challenge we address in this paper is

characterizing the regimes where we can benefit from the

power of two choices and at the same time have a low

communication cost.

In particular, suppose 0 < α, β < 1/2 be two constants and

let K = n, M = nα, r = nβ , and P be a Uniform distribution.

Then, provided α+2β ≥ 1+2(log log n/ log n), the maximum

load is Θ(log log n) w.h.p., and the communication cost is

Θ(r). Therefore, we deduce that if we set M = nα, for some

constant 0 < α < 1/2, then it is sufficient to have β =

2With high probability refers to an event that happens with probability
1− 1/nc, for some constant c > 0.

1−α
2 +log logn/ log n and hence r = n

1−α
2 log n. This means

that the communication cost is only log n factor above the

communication cost achieved by the nearest replica strategy,

which is Θ(
√
K/M) = Θ(n

1−α
2 ).

C. Related Work

Load balancing has been the focus of many papers on cache

networks [11], [12], [13], among which distributed approaches

have attracted a lot of attention (e.g., see [14], [7], and [15]).

Randomized load balancing via the power of two choices, is a

popular approach in this direction [6]. Chen et al. [16] consider

the two choices selection process, where the second choice is

the next neighbor of the first choice. In [17] Xia et al. use the

length of common prefix (LCP)-based replication to arrive at a

recursive balls and bins problem. In [16] and [17], the authors

benefit from the metaphor of power of two choices to design

algorithms for randomized load balancing. In contrast, in this

paper we follow a theoretical approach to derive provable

results for cache networks with limited memory.

In [18] the authors consider the supermarket model for

performance evaluation of CDNs. Although the work [18]

considers the memory limitation into account, it does not

consider the proximity principle which is a central issue in

our paper. Liu et al. [19] study the setting where the clients

compare the servers in terms of hit-rate (for web applications),

or bit-rate (for video applications) to choose their favourite

ones. Their setup and objectives are different from those we

consider here. Moreover, they have not considered the effect

of their randomized load balancing scheme on communication

cost.

Additionally, the trade-off between proximity and load

balancing in request routing has been considered in some

works such as [20], [21], and [22]. Although these works

have mentioned this trade-off, non of them provides a rigorous

analysis. To the best of our knowledge, our paper is the

first work characterizing the above trade-off in an analytical

framework.

From the theoretical viewpoint, in the standard balls and

bins model, each ball (request) picks two bins (servers) in-

dependently and uniformly at random and it is then allocated

to the one with lesser load [5]. However, memory limitation

and proximity principle in cache networks makes the bins

choices correlated which resembles the balls and bins model

with related choices (e.g., see [23], [10], [24], and [25]). Our

result also resides in this category, which is specific to cache

networks with memory limitation and proximity constraint.

The organization of the paper is as follows. In Section II,

we present our notation and problem setup. Then, in Section

III the nearest replica strategy, as the baseline scheme, is

presented and its maximum load and communication cost

are investigated. In Section IV, we propose the proximity-
aware two choices strategy, which at the same time considers

proximity of requests and servers, and benefits from the power

of two choices. In order to do this, we first present some

examples to shed light on different aspects of the problem.

Then, we propose our main results in two different regimes,
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namely M = nα, for every constant 0 < α < 1/2, and

M = K. In Section V performance of these two schemes are

investigated via extensive simulations. Finally, our discussions

and future directions are presented in Section VI.

II. NOTATION AND PROBLEM SETTING

A. Notation

Throughout the paper, with high probability refers to an

event that happens with probability 1−1/nc, for some constant

c > 0. Let G = (V,E) be a graph with vertex set V and edge

set E where e(G) := |E|. For u ∈ V let d(u) denote the

degree of u in G. For every pair of nodes u, v ∈ V , dG(u, v)
denotes the length of a shortest path from u to v in G. The

neighborhood of u at distance r is defined as

Br(u) := {v : dG(u, v) ≤ r and v ∈ V (G)} .

Finally, we use Po(λ) to denote for the Poisson distribution

with parameter λ.

B. Problem Setting

We consider a cache network consisting of n caching

servers (also called cache-enabled nodes) and edges connect-

ing neighboring servers forming a
√
n×√n grid. Thus, direct

communication is possible only between adjacent nodes, and

other communications should be carried out in a multi-hop

fashion.

Remark 1. Throughout the paper for the sake of presentation
clarity we may consider a torus with n. This helps to avoid
boundary effects of grid and all the asymptotic results hold
for the grid as well.

Suppose that the cache network is responsible for handling

a library of K files W = {W1, . . . ,WK}, whereas the popu-

larity profile follows a known distribution P = {p1, . . . , pK}.
The network operates in two phases, namely, cache con-

tent placement and content delivery. In the cache content

placement phase each node caches M ≤ K files randomly

from the library according to their popularity distribution

P = {p1, . . . , pK} with replacement, independent of other

nodes. Also note that, throughout the paper we assume that

M � K, unless otherwise stated.

Consider a time block during which n files are requested

from the servers sequentially. The server of each request is

chosen uniformly at random from n servers. Let Di denote

the number of requests (demands) arrived at server i. Then

for large n we have Di ∼ Po(1) for all 1 ≤ i ≤ n.

For library popularity profile P , we consider two probability

distributions, namely, Uniform and Zipf with parameter γ. In

the Uniform distribution we have

pi =
1

K
, i = 1, . . . ,K,

which considers equal popularity for all the files. In Zipf

distribution the request probability of the i-th popular file is

inversely proportional to its rank as follows

pi =
1/iγ

K∑
j=1

1/jγ
, i = 1, . . . ,K,

for a given parameter γ > 0, which has been confirmed to be

the case in many practical applications [26], [27].

For any given cache content placement, an assignment

strategy determines how each request is mapped to a server.

Let Ti denote the number of requests assigned to server i at

the end of mapping process.

Now, for each strategy we define the following metrics.

Definition 1 (Communication Cost and Maximum Load).
• The communication cost of a strategy is the average

number of hops between the requesting node and the
serving node, denoted by C.

• The maximum load of a strategy is the maximum number
of requests assigned to a single node, denoted by L =
max1≤i≤n Ti.

III. NEAREST REPLICA STRATEGY

The simplest strategy for assigning requests to servers is

to allocate each request to the nearest node that has cached

the file. This strategy, formally defined below, leads to the

minimum communication cost, while does not try to reduce

maximum load.

Definition 2 (Strategy I: Nearest Replica Strategy). In this
strategy each request is assigned to the nearest node –in the
sense of the graph shortest path distance– which has cached
the requested file. If there are multiple choices ties are broken
randomly.

Consider the set of nodes that have cached file Wj , say

Sj . According to Strategy I, each demand from node u for

file Wj will be served by argminv∈Sj
dG(u, v). This induces

a Voronoi Tessellation on the torus corresponding to file

Wj which we denote by Vj . Then, alternatively, we can

define Strategy I as assigning each request of file Wj to the

corresponding Voronoi cell center.

In order to analyze the maximum load imposed on each

node, we should investigate the size of such Voronoi regions.

The following Lemma is in this direction.

Lemma 1. Under the Uniform popularity distribution, the
maximum cell size (number of nodes inside each cell) of Vj ,
1 ≤ j ≤ K, is at most O (K log n/M) w.h.p. In particular,
every Voronoi cell centered at any node is contained in a sub-
grid of size r × r with r = O

(√
K log n/M

)
. Furthermore,

if K = n1−ε, for some constant 0 < ε < 1, and M = Θ(1),
then there exists a Voronoi cell of size Θ(K log n/M) w.h.p.

Proof. Refer to [28, Appendix B].
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Now, we are ready to present our main results for this

section which characterize the maximum load of Strategy I,

in Theorems 1 and 2.

Theorem 1. Suppose that K = n1−ε, for some constant 0 <
ε < 1, and M = Θ(1). Then, under Uniform distribution P ,
Strategy I achieves maximum load of L = Θ(logn) w.h.p.

Proof. Consider node u which has cached a set of distinct

files, say S, with |S| ≤M . Applying Lemma 1 shows that all

Voronoi cells centered at u corresponding to cached files at

u are contained in a sub-grid of size at most O(K log n/M)
w.h.p. Also in each round, every arbitrary node requests for a

file in S with probability |S|/nK ≤M/nK, as each request

randomly chooses its origin and type. Hence, by union bound,

a node in the sub-grid may request for a file in S with

probability at most O(K log n/M) · (M/nK) = O(log n/n).
Since there are n requests, the expected number of requests

imposed to node u is O(log n). Now using a Chernoff bound

(e.g., see [28, Appendix A]) shows that w.h.p. u has to handle

at most O(log n) requests.

On the other hand, to establish a lower bound on the

maximum load we proceed as follows. Lemma 1 shows that

there exits a Voronoi cell in Vj , for some j, such that the center

node should handle the requests of at least Θ(K log n/M)
nodes w.h.p. Also each node in the cell may request for

file Wj with probability 1/nK. So on average there are

Θ(log n/M) requests imposed on the cell center. Similarly,

by a Chernoff bound, one can see that this node experiences

the load Θ(log n/M), which concludes the proof for constant

M .

Remark 2. It should be noted that the same result of Θ(log n)
for the maximum load can also be proved for the Zipf
distribution. That is because the content placement distribution
is chosen proportional to the file popularity distribution P , and
consequently this result is insensitive to P . However, the proof
involves lengthy technical discussions which we omit in this
paper.

Theorem 2. Suppose that K = n and M = nα, for some 0 <
α < 1/2. Then, under the Uniform distribution, the maximum
load is in the interval [Ω(log n/ log logn), O(log n)] w.h.p.

Proof. Refer to [28, Appendix B].

Next, we investigate the communication cost of Strategy I

in the following theorem.

Theorem 3. Under the Uniform popularity distribution, Strat-
egy I achieves the communication cost C = Θ(

√
K/M),

for every M � K. Under Zipf popularity distribution with

M = Θ(1), it achieves

C =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ
(√

K/M
)

: 0 < γ < 1,

Θ
(√

K/M logK
)

: γ = 1,

Θ
(
K1−γ/2/

√
M

)
: 1 < γ < 2,

Θ
(
logK/

√
M

)
: γ = 2,

Θ
(
1/
√
M

)
: γ > 2.

(1)

Proof. Refer to [28, Appendix B].

Theorem 3 shows how non-uniform file popularity reduces

communication cost. The skew in file popularity is determined

by the parameter γ which will affect the communication cost.

For example, for γ < 1 communication cost is similar to the

Uniform distribution, while for γ > 2, it becomes independent

of K.

Since in Strategy I we have assigned each request to the

nearest replica, Theorem 3 characterizes the minimum com-

munication cost one can achieve. However, Theorems 1 and 2

show a logarithmic growth for the maximum load as a function

of network size n. This imbalance in the network load is be-

cause in Strategy I each request assignment does not consider

the current load of servers. A natural question is whether, at

each request allocation, one can use a very limited information

of servers’ current load in order to reduce the maximum load.

Also one can ask how does this affect the communication cost.

IV. PROXIMITY-AWARE TWO CHOICES STRATEGY

Strategy I introduced in the last section will result in the

minimum communication cost, while, the maximum load for

that strategy is of order Ω (logn/ log logn). In this section

we investigate an strategy which will result in an exponential

decrease in the maximum load, i.e., reduces maximum load to

Θ(log log n), formally defined as follows.

Definition 3 (Proximity-Aware Two Choices Strategy). For
each request born at an arbitrary node u consider two
uniformly at random chosen nodes from Br(u), that have
cached the requested file. Then, the request is assigned to the
node with lesser load. Ties are broken randomly.

For the sake of illustration, first, we consider some examples

in the following.

Example 1 (M = K and r =∞3). In this example each node
can store all the library and there is no constraint on proximity.
As mentioned in Section I, the number of files that should be
handled by each node (i.e., Di for i = 1, . . . , n) will be a
Po(1) random variable. In this case, according to Strategy II,
two random nodes are chosen from all network nodes and the
request is assigned to the node with lesser load.

Therefore, in terms of maximum load, this problem is
reduced to the standard power of two choices model in the
balanced allocations literature [5]. In this model there are

3It should be noted that r ≥ √
n (including r = ∞) is equivalent to

r =
√
n. Thus in this paper we use r =

√
n and r =∞ alternatively.
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n bins and n sequential balls which are randomly allocated
to bins. In every round each ball picks two random bins
uniformly, and it is then allocated to the bin with lesser load
[5]. Then it is shown that the maximum load of network is
L = maxi Ti = log logn(1 + o(1)) w.h.p. [5], which is an
exponential improvement compared to Strategy I.

However, in contrast to Example 1, in cache networks

usually each node can store only a subset of files, and this

makes the problem different from the standard balls and bins

model, considered in [5]. Here, due to the memory constraint

at each node, the choices are much more limited than the

M = K case. In other words here we have the case of

related choices. In the related choices scenario, the event of

choosing the second choice is correlated with the first choice;

this correlation may annihilate the effect of power of two

choices as demonstrated in Example 2.

Example 2 (K = n, M = Θ(1), and r =∞). In this regime,
there is a subset of the library, say S with |S| = Θ(n), whose
files are replicated in [1,M ] number of places. On the other
hand, each file type is requested Po(1) times and hence w.h.p.
there will be a file in S which is requested Θ(log n/ log logn)
times (e.g., see [29]). Since each file in S is replicated at most
M times, requests for the file are distributed among at most
M nodes and thus the maximum load of the corresponding
nodes will be at least Θ(log n/ log logn)/M . Hence, due to
memory limitation we cannot benefit from the power of two
choices.

Although Example 2 shows that memory limitation can

annihilate the power of two choices this is not always the case.

Example 3 shows that even for M = 1 for some scenarios we

can achieve L = O(log log n).

Example 3 (K = n1−ε for every constant 0 < ε < 1,

M = 1, and r =∞). For any popularity distribution P where∑K
j=1 (pjn)

−c = o(1), Strategy II achieves maximum load
L = O(log logn) w.h.p. Also, notice that Uniform and Zipf
distributions satisfy this requirement, whenever ε ∈

(
γ−1
γ , 1

)
for γ ≥ 1, where γ is Zipf parameter.

Roughly speaking, when M = 1, we may partition the
servers based on their cached file and hence we have K “dis-
joint” subsets of servers. Similarly there are K request types
where each request should be addressed by the corresponding
subset of servers. Thus, here we have K disjoint Balls and
Bins sub-problems, and the sub-problem with maximum load
determines the maximum load of the original setup. The reason
that here, in contrast to Example 2, we can benefit from power
of two choices is the assumption of K � n.

For a formal proof of above claim, refer to [28, Ap-
pendix C].

Above examples bring to attention the following question.

Question 1. In view of the memory limitation at each server
in cache networks, what are the regimes (in terms of problem
parameters) one can benefit from the power of two choices to
balance out the load?

Addressing Question 1, for the general M > 1 case, is more

challenging than Example 3 and needs a completely different

approach. The simplicity of case M = 1 is that there is no

interaction between K Balls and Bins sub-problems. On the

other hand, consider M > 1. If a request, say Wj , should

be allocated to a server then the load of two candidate bins

that have cached Wj should be compared. However, load of

other file types will also be accounted for in this comparison.

So there is flow of load information between different sub-

problems which makes them entangled.
In all above examples, we have not considered the proximity

constraint, i.e., r = ∞, yet. This results in a fairly high

communication cost C = Θ(
√
n). However, in general since

parameter r controls the communication cost, it can be chosen

to be much less than the network diameter, i.e., Θ(
√
n). This

proximity awareness introduces another source of correlation

(other than memory limitation) between the two choices. Thus,

considering the proximity constraint may annihilate the power

of two choices even in large memory cases as demonstrated

in the following example.

Example 4 (M = K and r = 1). In this example, when a
request arrives at a server, the server chooses two random
choices among itself and its neighbours. Then the request
is allocated to the one with lesser load. Since there exists
a server at which maxi Di = Θ(log n/ log logn) requests
arrive, maximum load of network (i.e., L = maxi Ti) will
be at least Θ(log n/ log log n)/5.

Thus, similar to Question 1 regarding the memory limitation

effect, one can pose the following question regarding proxim-

ity principle.

Question 2. In view of the proximity constraint of Scheme II,
what are the regimes (in terms of problem parameters) one
can benefit from the power of two choices to balance out the
load?

In order to completely analyze load balancing performance

of Scheme II, one should consider both sources of correlation

simultaneously (which is not the case in above examples). To

this end, in the following, we investigate two memory regimes,

namely M = K and M = nα, for some 0 < α < 1/2.
Our main result for M = nα is presented in the following

theorem.

Theorem 4. Suppose that 0 < α, β < 1/2 are two constants
and let K = n, M = nα, and r = nβ . Then if

α+ 2β ≥ 1 + 2 log logn/ log n,

under the Uniform popularity distribution, Strategy II achieves
maximum load L = Θ(log log n) and communication cost
C = Θ(r) w.h.p.

Remark 3. To have a more accessible proof, in Theorem 4,
we have assumed that K = n. Note that the proof techniques
can also be extended to the case where K = O(n).

In order to prove the theorem, let us first present an

interesting result that was shown in [10] as follows.
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Theorem 5 ([10]). Given an almost Δ-regular graph4 G
with e(G) edges and n nodes representing n bins, if n balls
are thrown into the bins by choosing a random edge with
probability at most O(1/e(G)) and placing into the smaller
of the two bins connected by the edge, then the maximum load
is Θ(log log n) +O

(
logn

log(Δ/ log4 n)

)
+O(1) w.h.p.

Remark 4. Note that in the original theorem presented in
[10], it is assumed that each edge is chosen uniformly among
all edges of graph G. However, here we slightly generalize
the result so that each edge is chosen with probability at most
O(1/e(G)). The proof follows the original proof’s idea with
some modifications in computation parts, where due to lack of
space we omit.

In order to apply Theorem 5, we first need to define a new

graph H as follows.

Definition 4 (Configuration Graph). For given parameter r,
configuration graph H is defined as a graph whose nodes
represent the servers and two nodes, say u and v, are
connected if and only if u and v have cached a common file
and d(u, v) ≤ 2r in the torus.

For every two servers u and v, let T (u, v) be the set of

distinct files that have been cached in both nodes u and v.

Also denote |T (u, v)| by t(u, v). Define t(u) to be the number

of distinct cached files in u. Now, let us define goodness of a

placement strategy as follows.

Definition 5 (Goodness Property). For every positive constant
δ ∈ [0, 1] and μ = O(1), we say the file placement strategy is
(δ, μ)-good, if for every u and v, t(u) ≥ δM and t(u, v) < μ.

Lemma 2. The proportional cache placement strategy intro-
duced in Section II, is (δ, μ)-good w.h.p. for some parameters
δ and μ.

Proof. Clearly, every set of cached files in every node (with

replacement) can be one-to-one mapped to a non-negative

integral solution of equation
∑K

i=1 xi = M , where each xi

expresses the number of times that file i has been cached in

the node. A combinatorial argument shows that, the equation

has
(
K+M−1

M

)
non-negative integer solutions. So for each

1 ≤ s ≤M , we have

Pr [t(u) = s] =

(
K
s

)(
M−1
M−s

)
(
K+M−1

M

) , (2)

where we first fix a set of file indexes of size s, say

I = {i1, i2, . . . , is}, and then count the number of integral

solutions to the equation
∑

i∈I xi = M − s.

In order to bound (2), we note that for every 1 ≤ a ≤ b,
(b/a)a ≤ (

b
a

) ≤ ba and also
(
b
a

) ≤ 2b. Recall that we assumed

4A graph is said to be almost Δ-regular, if each vertex has degree Θ(Δ).

K = n and M = nα, 0 < α < 1/2. Hence for every 1 ≤ s ≤
δM , we have

Pr [t(u) = s] ≤ Ks2M(
K
M

) ≤ Ks2M

(K/M)M
= (2M)MKs−M

≤ (2nαnδ−1)M .

Thus, by choosing δ = (1−α)/3, for every 1 ≤ s ≤ δM , we

have

Pr [t(u) = s] ≤ (2nα+δ−1)M = (2n2α/3−2/3)M

≤ (2n−1/3)M = n−ω(1),

where the last equality follows due to M = nα = ω(1). Now

the union bound over all 1 ≤ s ≤ δM and n nodes yields

Pr [∃u ∈ V : t(u) ≤ δM ] = n−ω(1). (3)

By a similar argument, for each 1 ≤ t ≤M and every u and

v, we have

Pr [t(u, v) ≥ t] =

(
K

t

)((
K+M−t−1

M−t

)
(
K+M−1

M

)
)2

.

Thus, for any constant μ ≥ 5/(1− 2α), we can write

Pr [t(u, v) ≥ μ]

≤ Kμ

(
(K +M − μ− 1)!M !

(K +M − 1)!(M − μ)!

)2

≤ Kμ

(
Mμ

Kμ

)2

≤ M2μ

Kμ
= n(2α−1)μ = O(1/n5).

By applying the union bound over all pairs of servers, for

every u and v we have

Pr [t(u, v) ≥ μ] = O(1/n3). (4)

Hence, t(u, v) < μ w.h.p. Putting inequalities (3) and (4)

together concludes the proof.

The following lemma presents some useful properties of H
and Strategy II.

Lemma 3. Conditioning on goodness of file placement and
assuming K = n, M = nα and r = nβ with α + 2β ≥
1 + 2 log logn/ log n, we have

(a) W.h.p. H is almost Δ-regular with Δ = Θ
(

M2r2

K

)
.

(b) For each request, Strategy II samples an edge of H (two
servers) with probability O(1/e(H)).

Proof. Consider arbitrary node u with s distinct files. Then

by definition of H , for every node v we have

ps := Pr [t(u, v) ≥ 1|t(u) = s] = 1−
(
K − s

K

)M

=
sM

K
(1 + o(1)),

where 1 ≤ s ≤M . On the other hand u and v are connected

in H , if in addition dG(u, v) ≤ 2r. Therefore for every given

node u with s distinct cached files, d(u) in H (degree of
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u in H) has a binomial distribution Bin(b2r(u), ps), where

b2r(u) = |B2r(u)|. Hence applying a Chernoff bound implies

that with probability 1− n−ω(1), we have

d(u) =
sMb2r(u)

K
(1 + o(1)).

Conditioning on the goodness of file placement, s = t(u) =
Θ(M). Also by symmetry of torus, we have b2r(u) = Θ(r2),
for every u. So, with high probability for every u, we have

d(u) = Θ
(
M2r2/K

)
,

where this concludes the proof of part (a).

Now it remains to show that Strategy II picks an edge of

H , with probability O(1/e(H)). First, notice that

e(H) = Θ
(
nM2r2/K

)
= Θ(M2r2), (5)

as K = n. Then recall that each file is cached in every node

with probability p = 1 − (1 − 1/K)M = M/K(1 + o(1)),
independently. For any given node u and file Wj , let Fj(u)
be the number of nodes at distance at most r that have cached

file Wj . Then Fj(u) has a binomial distribution Bin(br(u), p),
where br(u) = |Br(u)|. So

E [Fj(u)] = br(u) · p = Θ(r2M/K),

where br(u) = Θ(r2) for every u. Since

α+ 2β ≥ 1 + 2 log logn/ log n we have E [Fj(u)] =
ω(log n), for every u and j. Now, applying a Chernoff bound

for Fj(u) implies that with probability 1 − n−ω(1), Fj(u)
concentrates around its mean and hence, w.h.p., we have for

every u and j

Fj(u) = Θ(r2M/K) = Θ(r2M/n).

Consider an edge (u, v) ∈ E(H), with t(u, v) = t. Define

Su,v to be the set of nodes that may pick pair u and v randomly

in Strategy II. It is not hard to see that |Su,v| = O(r2). Now

we have,

Pr [(u, v) ∈ E(H) is picked by Strategy II|t(u, v) = t]

=
∑

j∈T (u,v)

1

K

∑
w∈Su,v

1

n

1(
Fj(w)

2

)
=

1

n2

∑
j∈T (u,v)

∑
w∈Su,v

1(
Fj(w)

2

)
=

1

n2

∑
j∈T (u,v)

∑
w∈Su,v

Θ(n2/r4M2). (6)

Conditioned on “goodness,” we have for every (u, v) ∈ E(H),
1 ≤ t(u, v) < μ. So (6) can be simplified as

Pr [(u, v) ∈ E(H) is picked by Strategy II]

≤ Θ(μ|Su,v|/r4M2)

= O(1/r2M2) = O(1/e(H)),

where the last equality follows from (5).

Proof of Theorem 4. Applying Lemma 3 shows that w.h.p. the

configuration graph H is an almost Δ-regular graph where

Δ = M2r2/n. Moreover, in each step, every edge of H is

chosen randomly with probability O(1/e(H)). Hence, we can

apply Theorem 5 and conclude that w.h.p. the maximum load

is at most

Θ(log log n) +O

(
log n

log(Δ/ log4 n)

)
= Θ(log log n) +O(1),

where it follows because α+ 2β ≥ 1 + 2 log logn/ log n and

hence Δ = M2r2/n = n2α+2β−1 > nα.

Now let us present our next result regarding to the M = K
regime.

Theorem 6. Suppose M = K and Uniform distribution P
over the file library. Then Strategy II achieves the maximum
load L = Θ(log log n) and communication cost C = Θ

(
nβ

)
for any β = Ω(log log n/ log n).

Proof. Let us choose r = nβ , for some β =
Ω(log log n/ log n). By the assumption M = K, the configu-

ration graph H (corresponding to r) is a graph in which two

nodes u and v are connected if and only if d(u, v) ≤ 2r. Since

our network is symmetric, for every u, |Br(u)| = Θ(r2) and

hence H is a regular graph with Δ = Θ(r2). Also it is not

hard to see that Strategy II is equivalent to choosing an edge

uniformly from H . Applying Theorem 5 ([10]) to H results in

the maximum load of Θ(log log(n)). In addition, choosing two

random nodes in |Br(u)| = Θ(r2) results in communication

cost of C = Θ(r) = Θ
(
nβ

)
.

The main point of Theorem 6 is that we can just have

C = Θ
(
nβ

)
, for β = Ω(log log n/ log n), to benefit from the

luxury of power of two choices, which is a very encouraging

result.

V. SIMULATIONS

In this section, we demonstrate the simulation results for two

strategies introduced in the previous sections, namely nearest
replica and proximity aware two choices. The simulation

results are shown for the torus topology. Here, we consider

Uniform popularity over the file library. As a result, the file

placement is also considered to be uniform over the servers’

storage.

Figure 1 shows the maximum load of Strategy I as a

function of the number of servers where different curves

correspond to different cache sizes. The network graph is a

torus, where 100 files with Uniform popularity are placed

uniformly at random in each node. Each point is an av-

erage of 10000 simulation runs. This figure confirms that

the logarithmic growth of the maximum load, asymptotically

proved in Theorem 1, also holds for intermediate values of

n ≈ 100, . . . , 3000 which makes the result of Theorem 1 more

general. Comparing different curves reveals the fact that in

larger cache size setting, we have a more balanced network.

That happens because enlarging cache sizes results in a more

uniform Voronoi tessellation, i.e., having cells with smaller

variation in size.
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Fig. 1: The maximum load versus number of servers for

Strategy I.
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Fig. 2: The communication cost versus cache size for Strat-

egy I.

Furthermore, Figure 2 shows the communication cost of

Strategy I as a function of cache size where different curves

correspond to different library sizes. Here, the network graph

is a torus of size 2025 and each point is an average of 10000
simulation runs. This figure is in agreement with the result of

Theorem 3.

In order to simulate Strategy II, first we set r = ∞ to

study the effect of cache size on the maximum load and
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Fig. 3: The maximum load versus number of servers for

Strategy II. Here, we assume r =∞.
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Fig. 4: The communication cost versus number of servers for

Strategy II. Here, we assume r =∞.

communication cost and then consider the effect of limited

r on the performance of the system. Figure 3 shows the

maximum load of the network versus number of servers where

each curve demonstrates a different cache size. The network

graph is a torus, where 2000 files with Uniform popularity

are placed uniformly at random in each node. Each point is

an average of 800 simulation runs. In each curve, since cache

size and number of files are fixed, increasing the number of

servers translates to increasing each file replication.

In Figure 3, when the file replication is low, due to high

correlation between the two choices of Strategy II, power of

two choices is not expected. This is reflected in Figure 3; for

example in the curve corresponding to M = 1 for n ≤ 10000
we have a fast growth in maximum load which mimics the load

balancing performance of Strategy I. However, for n > 50000,

since there is enough file replication in the network, the load

balancing performance is greatly improved due to power of

two choices. This is in accordance with the lessons learned

from Section IV. Also, for 10000 < n < 50000, we have

a transition region where a mixed behaviour is observed.

Likewise, the curve for M = 2 shows a similar trend.

However, for M = 10 due to memory abundance, we only

observe the latter behaviour where power of two choices is

achieved. Observations made above from Figure 3 has an

important practical implication. Since employing Strategy II

is only beneficial in networks with high file replication, for

other situations with limited cache size, the less sophisticated

Strategy I is a more proper choice.

Figure 4 draws the communication cost versus number of

servers for various cache sizes for similar setting used in

Figure 3. Since in this figure there is no constraint on the

proximity the communication cost growth is of order Θ(
√
n).

In simulations depicted in Figures 3 and 4, we only consider

the case r =∞. In order to investigate the effect of parameter

r on the performance of the system, in Figure 5, we have sim-

ulated network operation for different values of r. This results

in a trade-off between the maximum load and communication

cost, as shown in Figure 5. Here we consider a torus with 2025
servers, where 500 files with Uniform popularity are placed

uniformly at random in each node. Each point is an average

1075



0 2 4 6 8 10 12 14 16 18 20
3

4

5

6

7

8

9

average cost (# of hops)

m
ax

im
um

 lo
ad

 

 
Cache size = 1

Cache size = 2

Cache size = 5

Cache size = 10
Cache size = 20

Cache size = 50

Cache size = 200

Fig. 5: The tradeoff between the maximum load and commu-

nication cost for Strategy II.

of 5000 simulation runs.

In this figure, like before, i.e., Figure 3, we observe two

performance regimes based on the cache size M . In high

memory regime, e.g., for curves corresponding to M = 50
and M = 200, we can achieve the power of two choices

by sacrificing a negligible communication cost. On the other

hand, in low memory regime, i.e., M = 1, we cannot decrease

the maximum load even at the expense of high communication

cost values. For intermediate values of M , we clearly observe

the trade-off between the maximum load and communication

cost.

VI. DISCUSSION, OPEN QUESTIONS AND FUTURE

DIRECTIONS

In this section, first, we summarize the paper. Then we

bring forward discussion about the proposed schemes, open

questions and possible future directions.

In summary, we have considered the problem of ran-

domized load balancing and its tension with communication

cost in cache networks. By proposing two request assign-

ment schemes, the trade-off between communication cost and

maximum load has been investigated analytically. Moreover,

simulation results support our theoretical findings and provide

practical design guidelines.

The proposed proximity-aware two choices scheme can be

implemented in a distributed manner. To see why, notice

that upon arrival of each request at each server, this strategy

needs two kinds of information to redirect the request. This

information can be provided to the requesting server without

the need for a centralized authority in the following way. The

first one is the cache content of other users in its neighborhood

with radius r. Since, the cache content dynamic of servers is

much slower than the requests arrival, this can be done by

periodic polling of nearby servers without introducing much

overhead. Also, the cache content placement at each server can

be implemented via efficient Distributed Hash Table (DHT)

schemes (see, e.g., [30] and [31]), which can be adopted to

dynamic library popularity profiles. This will also enable all

users to obtain global cache content information in a robust

and distributed manner. In this paper we assume a static profile

and do not go into the details of such schemes. The second

type of information is the queue length information of two

randomly chosen nodes inside its neighborhood with radius r,

which can also be efficiently done in a distributed manner by

polling or piggybacking.

In practice, request arrivals and servers’ operation happen

in continuous time which needs a queuing theory based

performance analysis. However, as shown in [6] and [32],

the behaviour of load balancing schemes in continuous time

(i.e., known as the supermarket model) and static balls and

bins problems are closely related. Thus, we conjecture that

our proposed scheme will also have the same performance in

queuing theory based model. We postpone a rigorous analysis

of such scenario to future work.

In this paper we do not consider any form of coding in

the cache content placement and content delivery phases.

However, as recently shown in [33] (and follow up works [34],

[35], [36]), employing coding in cache networks can reduce

network traffic dramatically. An important future work will be

investigating the effect of coding techniques in the context of

our proposed randomized load balancing scheme.
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