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Abstract—We consider a group of m trusted and authenticated
nodes that aim to create a shared secret key K over a wireless
channel in the presence of an eavesdropper Eve. We assume that
there exists a state dependent wireless broadcast channel from
one of the honest nodes to the rest of them including Eve. All of
the trusted nodes can also discuss over a cost-free, noiseless and
unlimited rate public channel which is also overheard by Eve.

For this setup, we develop an information-theoretically secure
secret key agreement protocol. We show the optimality of this
protocol for “linear deterministic” wireless broadcast channels.
This model generalizes the packet erasure model studied in
literature for wireless broadcast channels. Here, the main idea
is to convert a deterministic channel to multiple independent
erasure channels by using superposition coding.

For “state-dependent Gaussian” wireless broadcast channels,
by using insights from the deterministic problem, we propose
an achievability scheme based on a multi-layer wiretap code.
By using the wiretap code, we can mimic the phenomenon of
converting the wireless channel to multiple independent erasure
channels. Then, finding the best achievable secret key generation
rate leads to solving a non-convex power allocation problem
over these channels (layers). We show that using a dynamic
programming algorithm, one can obtain the best power allocation
for this problem. Moreover, we prove the optimality of the
proposed achievability scheme for the regime of high-SNR and
large-dynamic range over the channel states in the (generalized)
degrees of freedom sense.

Keywords
Secret key sharing, multi-terminal secrecy, information the-

oretical secrecy, wireless channel, public discussion.

I. INTRODUCTION

We consider the problem of generating a secret key K
among m ≥ 2 honest (trusted and authenticated) nodes that
communicate over a wireless channel in the presence of a
passive eavesdropper Eve (for example consider a scenario
where all people in a conference room aim to generate
a common secret key in the presence of one or multiple
adversaries behind the doors). We restrict our attention to the
case where communication occurs either through a broadcast
channel, where the received symbols are independent among
all receivers of the broadcast transmissions including Eve
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(given that the transmitted symbols is known), or, through a
no-cost noiseless public channel.

Here, extending our earlier partial results appeared in [1],
we focus on the group secret key agreement over a state-
dependent Gaussian broadcast channel. This model can be
motivated by fading wireless channels, where the channel
states vary over time; i.e., the variation of SNR1 level is mod-
eled by the state of the channel. The use of state-dependent
channels for secrecy has been of interest recently (see for
example [2], [3], [4], [5] and references therein). To gain
insight into our problem, we first investigate a deterministic
approximation of the wireless channel as introduced in [6].

For the deterministic broadcast channel we will show that
using a superposition based secrecy scheme [7], we can
develop a group key agreement protocol that can be shown
to be information-theoretically optimal. This can be done by
converting the deterministic channel to multiple independent
erasure channels. In particular, we show that we can get the
same key agreement rate for the entire group as we would get
for a single pair of nodes. Therefore this result demonstrates
that in the presence of an unlimited public channel, we get
secret key-agreement rates for linear deterministic channels,
that is invariant to network size. Similar to the case of erasure
broadcast channel [8], a key idea to get this is a connection
to network coding (NC), which allows efficient (in the block
length) reconciliation of the group secret (also, refer to [9,
Appendix A] for a review of our previous results on the group
secret key agreement over erasure broadcast channels).

We use the deterministic achievability scheme to get some
insight about the Gaussian wireless broadcast channel with
state. To this end, we use a multi-layer (nested message
set, degraded channel) wiretap code based on the broadcast
approach of [7], [10] to develop a key-agreement protocol
for the noisy broadcast problem. This enables a scheme that
converts the wireless channel with state to behave similar to
the deterministic case. In particular, by using this technique
we obtain a number of independent erasure channels. As a
result, we show that the achievable secret key generation rate
is given by a non-convex optimization problem that determines
the power allocation over different layers of the wiretap code
(e.g., different erasure channels).

Although the power allocation optimization problem is non-
convex, by investigating and exploiting its special structure, we
provide a dynamic programming based algorithm that finds
the optimal solution to this optimization problem. The final

1Signal to noise ratio.
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solution is hard to be written in a closed form expression
for the general case. However, the output of our algorithm
should not be considered as a numerical approximation but an
exact solution. The devised algorithm enables us to evaluate
the performance of the proposed group secret key-agreement
protocol for various situations.

Finally, we derive an upper bound on the secrecy rate and
compare it with the achievable rate by the proposed scheme.
Furthermore, we show that although the proposed achievability
scheme is not optimal, it can be proved that for the high-
SNR regime when there is a large-dynamic range between
the channel states, this scheme is optimal in the (generalized)
degrees of freedom sense.

A. Related Work

Secret key generation over wireless channels is a problem
that has attracted significant interest. In a seminal paper on
“wiretap” channels, Wyner [11] pioneered the notion that
one can establish information-theoretic secrecy between Alice
and Bob by utilizing the noisy broadcast nature of wireless
transmissions. However, his scheme works only if we have
perfect knowledge of Eve’s channel and moreover, only if
Eve has a worse channel than Bob. In a subsequent seminal
work, Maurer [12] showed the value of feedback from Bob to
Alice, even if Eve hears all the feedback transmissions (i.e.,
the feedback channel is public). He showed that even if the
channel from Alice to Eve is better than that to Bob, feedback
allows Alice and Bob to create a key which is information-
theoretically secure from Eve (also see [13]). The problem
of key agreement between a set of terminals having access
to a noisy broadcast channel and a public discussion channel
(visible to the eavesdropper) was studied in [14], where the
secret key generation capacity is completely characterized,
assuming Eve does not have access to the noisy broadcast
transmissions. The case when the eavesdropper also had access
to the broadcast channel was the main focus of recent work
in [15], [16] which developed upper and lower bounds for
secrecy rates. If the trusted nodes have access to a multi-
terminal channel instead of a broadcast channel, [17] and [18],
independently, derived upper and lower bounds for secret key
generation capacity under the assumption that Eve has only
access to the public channel.

The best achievable secrecy rate by our scheme for the
Gaussian state-dependent channel is given by a non-convex
optimization problem (see (20)) which can be reformulated
as a generalize linear fractional program [19]. In [20], the
weighted throughput maximization problem have been studied
which involves a similar optimization problem to (20) and
the authors employs numerical techniques introduced in [19]
to solve this problem. In our case, however, the convergence
time of such numerical method is not practical and we have
to develop an approach in Section VII to solve optimization
problem (20) analytically.

To the best of our knowledge, ours is the first work to
consider multi-terminal secret key agreement over erasure
networks and wireless broadcast channels with state, when Eve
also has access to the noisy broadcast transmissions. Moreover,

unlike the information-theoretic works (e.g., [11], [12], [13],
[14], [16]) that assume infinite complexity operations, our
schemes for the deterministic broadcast channels (that includes
the erasure channel case [8]) as well as for the Gaussian
broadcast channels are computationally efficient. It is worth
mentioning that following a conference version of this work on
the packet erasure channel [8], there has been some attempts
to bring those ideas into practical scenarios, e.g., [21], [22],
[23], [24].

The rest of the paper is organized as follows. In Section II,
we introduce our notation and the problem formulation. Sec-
tion III summarizes the main results of the paper. Our general
upper bound on the secret key generation capacity for an
independent broadcast channel is presented in Section IV.
Each of the “deterministic,” and “state-dependent Gaussian”
models will be discussed in Section V and Section VI, respec-
tively. The solution of the non-convex optimization problem
is derived in Section VII. Finally, open questions and future
directions will be discussed in Section VIII.

II. NOTATION AND PROBLEM STATEMENT

For convenience, during the paper, we use [i : j] to denote
the set of integers {i, i + 1, . . . , j}. Given random variables
X1, . . . , Xm, we write X1:m to denote (X1, . . . , Xm). We use
also Xt to denote (X[1], . . . , X[t]) where t is the discreet time
index. All the logarithms are in base two unless otherwise
stated. We write f(x)

·
= g(x) to denote that log f(x) =

log g(x) + o(log x). The notation “
·
≤” and “

·
≥” are defined

similarly.

A. Problem Statement

We consider a set of m ≥ 2 honest nodes {0, . . . ,m − 1}
that aim to share a secret key K among themselves while
keeping it concealed from a passive adversary Eve, denoted
by “E”. Eve does not perform any transmissions, but is trying
to eavesdrop on (overhear) the communications between the
honest nodes2.

We assume that Alice (terminal 0) has access to a broadcast
channel such that the rest of the terminals (including Eve)
receive independent noisy version of what she broadcasts (see
Figure 1a), where the input and output symbols of the channel
are from some arbitrary sets. We also assume that all of
the honest terminals can discuss over a cost-free noiseless
public channel where everybody (including Eve) can hear the
discussion (see Figure 1b).

The protocol stated in Definition 1 introduces the most gen-
eral form of an interactive communication between terminals
aiming to share a common secret key K (e.g., see also [12],
[14], [16], [13]).

Definition 1 (Secret key generating protocol).
1) For t = 0, all of the honest terminals generate independent
random variables Q0, . . . , Qm−1.
2) (i) For time 1 ≤ t ≤ n, Alice transmits X0[t] over

2For convenience, sometimes we will refer to legitimate terminals
0, 1, 2, . . . , as “Alice,” “Bob,” “Calvin,” and so on. So for example, we use
X0, X1, X2, etc. interchangeably with XA, XB, XC, etc.
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Fig. 1: (a) The broadcast channel that Alice (terminal T0) has
access to. (b) The cost-free noiseless public channel that all
of the trusted node can discuss over. Eve overhears all of the
public discussions completely.

the broadcast channel. Then the other terminals receive
X1[t], . . . , Xm−1[t], and Eve receives XE[t].
(ii) Following each of the broadcast transmissions, there is
the possibility for the legitimate terminals to discuss over a
cost-free noiseless public channel. The discussion continues in
a round robin order for an arbitrary number of rounds. The
whole public discussion at time t is denoted by D[t]. Notice
that what Alice broadcasts at time t depends on Q0 and Dt−1.
3) Finally, the ith terminal creates a key Ki where Ki =
Ki(Qi, X

n
i , D

n).

Definition 2. A number Rs is called an achievable key
generation rate if for every ε > 0 and sufficiently large n there
exists a key generating protocol as defined in Definition 1 such
that we have

P [Ki 6= Kj ] < ε, ∀i, j ∈ [0 : m− 1], i 6= j, (1)
I(K0;Xn

E , D
n) < ε, (2)

1

n
H(K0) > Rs − ε. (3)

The supremum of the achievable key rate as n → ∞ and
ε→ 0 is called the secret key generation (SKG) capacity Cs.

Remark 1. It is worth mentioning that in contrast to [14]
where the secret key should be generated by only a subset
of terminals [0 : m − 1] and the rest of nodes can act as
helpers, in the above model all the terminals need to have the
shared secret key at the end of the protocol. Moreover, in [14],
some of the helpers though participating in the key generation
protocol, are wire-tapped by the eavesdropper and the secret
key should be kept secret from them as well. Also, they do
not consider eavesdroppers who do not take participate in the
protocol. However, it should be emphasized that our proposed
scheme can be easily modified so that only a subset of nodes
share a secret and the rest act as helpers.

B. State-Dependent Gaussian Broadcast Channels

Here, we introduce the state-dependent additive white Gaus-
sian broadcast channel model which is the main focus of this
paper. In this model, we assume that for each receiver the
channel state remains unchanged during a block of symbols
of length L and changes independently from one block to
another block. We also assume L is large enough so that
enables us to apply information theoretical arguments within
each block. The transmitted vector sent by Alice is denoted
by XA ∈ RL. The received vector at each receiver (including
Eve) depend on its channel state at a particular time instant.
We define a random variable Si[t] ∈ [0 : s] corresponding to
the channel state for the ith terminal at time t and similarly
define the random variable SE[t] ∈ [0 : s] for Eve. For the
channel state of a receiver r ∈ {1, . . . ,m− 1,E} we assume
that3 P [Sr[t] = k] = δk,∀k ∈ [0 : s], where

∑s
k=0 δk = 1.

The received vector at the receiver r is modelled by a state-
dependent white Gaussian channel as follows

X̂r[t] =
√
hSr[t]XA[t]+Zr[t], ∀r ∈ {1, . . . ,m−1,E}, (4)

where X̂r[t] ∈ RL and Zr[t] ∈ RL . For the additive noise
of each receiver we assume Zr[t] ∼ N(0, IL) and the noise
vectors are also independent over time. The channel gains

√
hi

are some real constants such that h0 < · · · < hs. Additionally,
the channel input is subject to an average power constraint
Pmax, i.e., 1

LE
[
‖XA‖2

]
≤ Pmax.

Moreover, we assume that the CSI4 is completely known by
each receiver. So we define a composite received vector for
each receiver r as Xr[t] = (X̂r[t], Sr[t]).

C. Deterministic Broadcast Channel

Now, following the idea proposed in [6], we introduce the
deterministic approximation model for our Gaussian channel.
We assume that the transmitted vector (packet) sent by Alice
is denoted by XA ∈ FLq where Fq is a finite field of size q.
Then, the received vector at the receiver r is modeled by a
state-dependent deterministic broadcast channel as follows

X̂r[t] = F Sr[t]XA[t], ∀r ∈ {1, . . . ,m− 1,E}, (5)

where F i ∈ FL×Lq for i ∈ [0 : s]. As defined in Section II-B,
Sr[t] denotes the channel state at a receiving node r at time t
with a distribution P [Sr[t] = k] = δk,∀k ∈ [0 : s], where∑s
k=0 δk = 1. Moreover, similar to the Gaussian model,

we define a composite received vector for the receiver r as
Xr[t] = (X̂r[t], Sr[t]).

In order to capture and model the different SNR level for
the Gaussian channel, we use the shift matrix model developed
in [6]. To this end, we consider matrices F i such that they
satisfy the following nested structure

~0 = kerF s ⊂ kerF s−1 ⊂ · · · ⊂ kerF 0 = FLq , (6)

rank(F i − F i−1) = rank(F i)− rank(F i−1). (7)

3For simplicity of demonstration and without loss of generality, here we
only consider a symmetric problem where the probability distribution over
the states are the same for all of the receivers (including Eve). Moreover, we
focus on a finite number of states. Both of these restrictions can be relaxed.

4Channel state information.
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For convenience we assume that F s = IL where IL is the
identity matrix of size L. The two extreme states “0” and “s”
correspond to complete erasure and complete reception of the
transmitted vector (packet) XA. The deterministic model is
indeed an extension to the packet erasure broadcast channel,
studied in [8], [24], which has only two channel states, i.e.,
s = 1, (see also [9, Appendix A]).

D. Discussion on the Cryptographic Analysis

We do not make any assumption on the computational
ability of the adversary, i.e., this leads to the unconditional
secrecy in the cryptography terminology. Additionally, it is
assumed that the channel state is random and not known by
any party including the adversary a-priori. The adversary can
hear the Alice’s broadcast through a fading channel, and also
the acknowledgments through a noise-free public discussion
channel, i.e., we consider a passive eavesdropper that does not
tamper with the communications of legitimate nodes. Further-
more, we assume all the legitimate nodes are authenticated so
only these nodes can participate in the public discussion. Our
security model for the adversary is defined in Definition 2,
Eq. (2), i.e., I(K0;Xn

E , D
n) < ε. This definition provides

an unconditional secrecy guarantee which is more powerful
than the computational secrecy guarantee. The communication
model is also discussed in Section II.

We have demonstrated the value of some of these ideas in
test-bed implementations in [22] and [24].

III. MAIN RESULTS

The main results of this paper are summarized in the
following. For the secret key generation scenario among m
terminals that have access to a “deterministic broadcast chan-
nel,” we completely characterize the key generation capacity.
This result can be considered as the generalization of the result
of [8], [24] for “packet erasure broadcast channels” (see The-
orem 1). For a “state-dependent Gaussian broadcast channel,”
we provide upper and lower bounds for the key generation
capacity and show that these bounds will match in the high-
dynamic range, high-SNR regime. Furthermore, the achievable
secrecy rate by our proposed scheme for the Gaussian model
is described by a non-convex power optimization problem.
Although this problem is non-convex, by exploiting its special
structure, we find the optimal power allocation that leads to
the best secrecy rate achievable by the proposed scheme.

Theorem 1. The SKG capacity among m terminals that have
access to a state-dependent deterministic broadcast channel,
defined in Section II-C, is given by

Cdet
s =

s∑
i=1

[rankF i − rankF i−1] θi(1− θi) log q,

where θi ,
∑i−1
j=0 δj .

Theorem 1 is proved in Section V (see Lemma 2 and
Lemma 3). Notice that the result of [8] is a special case of
Theorem 1 when s = 1.

Theorem 2. The SKG capacity among m terminals that have
access to a state-dependent Gaussian broadcast channel, as
defined in Section II-B, is upper bounded by

Cgaus
s ≤ 1

2
L

s∑
i=0

s∑
j=0

δiδj log

(
1 +

hiPmax

1 + hjPmax

)
.

Moreover, the secrecy capacity can be lower bounded by the
solution of the following (non-convex) optimization problem

Cgaus
s ≥


max

∑s
i=1 ∆iLRi

subject to
∑s
i=1 Pi = Pmax

Pi ≥ 0, ∀i ∈ [1 : s],

where ∆i , (1− θi)θi. Also ∀i ∈ [1 : s] we have

Ri ,
1

2

[
log

(
1 +

hiPi
1 + hiIi

)
− log

(
1 +

hi−1Pi
1 + hi−1Ii

)]
,

where Ii ,
∑s
j=i+1 Pj . Additionally, for the high-dynamic

range case where hi � hi−1,∀i ∈ [1 : s], and when we are
in high SNR regime, we can write

Cgaus
s

·
=

1

2
L

s∑
i=1

∆i log
hi
hi−1

,

where “ ·=” defined in Section II, is used to denote for the
exponential equality with respect to some scaling parameter
Q. Here, as Q → ∞, we asymptotically approach to the
high-dynamic, high-SNR regime (for more details refer to
Section VII-A).

Theorem 2 is proved in Section VI and Section VII-A. In
particular see Lemma 4, Lemma 5, and Lemma 7.

It is worth mentioning that the power optimization problem
stated in Theorem 2 is a non-convex problem. Although the
closed-form solution of the this problem is not easy to derive
explicitly, but by using dynamic programming it can be easily
found numerically. In Section VII, based on the structure of
this optimization problem and by exploiting special properties
of its KKT necessary conditions for the optimality, we propose
a dynamic programming algorithm that finds the optimal
power allocation (see Algorithms 1 and 2). More specifically,
we have the following theorem.

Theorem 3. Algorithms 1 and 2 find the optimal solution of
the optimization problem stated in Theorem 2.

The whole Section VII is devoted to proving Theorem 3.

IV. UPPER BOUND FOR THE KEY GENERATION CAPACITY
OF INDEPENDENT BROADCAST CHANNELS

The secret key generation capacity among multiple termi-
nals (without eavesdropper having access to the broadcast
channel) is completely characterized in [14]. By using this
result, it is possible to state an upper bound for the secrecy
capacity of the key generation problem among multiple termi-
nals where the eavesdropper has also access to the broadcast
channel. This can be done by adding a dummy terminal to the
first problem and giving all the eavesdropper’s information to
this dummy node and let it to participate in the key generation
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protocol (we refer the interested readers to [14, Section V] for
more details). By doing so, the secret key generation rate does
not decrease. Hence by combining [14, Theorem 4.1] and [14,
Lemma 5.1], the following result can be stated.

Lemma 1. The secret key generation capacity among m
terminals as defined in Definition 2, is upper bounded as
follows

Cs ≤ max
PX0

min
λ∈Λ([0:m−1])

[
H(X[0:m−1]|XE)

−
∑

B([0:m−1]

λBH(XB |XBc , XE)

]
,

where Λ([0 : m − 1]) is the set of all collections λ =
{λB : B ( [0 : m− 1], B 6= ∅} of weights 0 ≤ λB ≤ 1,
satisfying ∑

B([0:m−1], i∈B
λB = 1, ∀i ∈ [0 : m− 1]. (8)

Note that in the above expression for the upper bound, it is
possible to change the order of maximization and minimiza-
tion, see [14, Theorem 4.1].

Remark 2. The upper bound stated in Lemma 1 is not the
best known upper bound for the secret key sharing capacity of
the multi-terminal secret key sharing problem (see also [15],
[16] for alternative improved bounds). However in this work,
we use Lemma 1 to derive an upper bound for our problem.
This bound is good enough that in addition to the proposed
achievability scheme, completely characterize the secret key
sharing capacity for the “state-dependent deterministic chan-
nels” scenario.

Now, back to our problem where the channel from Alice
to the other terminals are assumed to be independent, we can
further simplify the upper bound given in Lemma 1, as stated
in Corollary 1.

Corollary 1 ([8],[9]). If the channels from Alice to the other
terminals are independent, then the upper bound stated in
Lemma 1 for the SKG capacity is simplified to

Cs ≤ max
PX0

min
j∈[1:m−1]

I(X0;Xj |XE) (9)

≤ min
j∈[1:m−1]

max
PX0

I(X0;Xj |XE). (10)

Remark 3. Using [12, Theorem 7] or [13, Theorem 2], we
observe that the bound given in (10) is indeed tight for the two
terminals problem where we have the Markov chains XB ↔
XA ↔ XE, i.e., when the channels are independent or XA ↔
XB ↔ XE, i.e., when the channels are degraded. In Section V,
we will further show that the above upper bound is also tight
for the stated-dependent deterministic broadcast channels.

V. GROUP SECRET KEY AGREEMENT OVER
DETERMINISTIC BROADCAST CHANNELS

In this section, we prove Theorem 1 that characterizes the
secret key generation capacity for a deterministic broadcast
channel defined in Section II-C. The proof of this theorem, as

an underlying machinery, uses the achievability technique for
the packet erasure broadcast channel that is appeared in [8],
[24] (for more details, also see [9, Appendix A]).

A. Upper Bound for the Key Generation Capacity

Using Corollary 1, the SKG capacity Cdet
s for the indepen-

dent broadcast channel can be upper bounded by (10). Then
we can state the following result, Lemma 2.

Lemma 2. The SKG capacity of the deterministic broadcast
channel, introduced in Section II-C, is upper bounded by
Cdet
s ≤ ∑s

i=1 [rankF i − rankF i−1] θi(1 − θi) log q, where
θi =

∑i−1
j=0 δj .

Proof. From (10) and because of the symmetry of the problem,
we have Cdet

s ≤ maxPXA
I(XA;XB|XE) where we use “A”

and “B” to denote for terminal 0 and terminal 1. Then, we
can write

H(XA|XE) =

s−1∑
i=0

δi

[
H(XA|X̂E, SE = i)

]
=

s−1∑
i=0

δi

[
H(XA, X̂E|SE = i)−H(X̂E|SE = i)

]
=

s−1∑
i=0

δi [H(XA)−H(F iXA)] ,

and similarly

H(XA|XB, XE) =
s−1∑
i=0

κi [H(XA)−H(F iXA)] ,

where κi , 2δi(δ0 + · · · + δi−1)1{i>0} + δ2
i . Thus, we

have I(XA;XB|XE) =
∑s−1
i=0 ρi [H(XA)−H(F iXA)] where

ρi , δi − κi. Now, by observing that H(F iXA) =
H(F iXA,F i−1XA) and applying the chain rule recur-
sively, we get H(F iXA) =

∑i
j=1H(F jXA|F j−1XA). So

I(XA;XB|XE) can be expanded as follows

I(XA;XB|XE) =
s−1∑
i=0

ρi[H(XA)−H(F iXA)]

=

s∑
j=1

H(F jXA|F j−1XA)

j−1∑
i=0

ρi.

Hence we can upper bound Cdet
s as follows

Cdet
s ≤ max

PXA

s∑
j=1

H(F jXA|F j−1XA)

j−1∑
i=0

ρi

= max
PXA

s∑
j=1

H ([F j − F j−1]XA|F j−1XA)

j−1∑
i=0

ρi

(a)
≤ max

PXA

s∑
j=1

H ([F j − F j−1]XA)

j−1∑
i=0

ρi

(b)
=

s∑
j=1

rank (F j − F j−1)

(
j−1∑
i=0

ρi

)
log q
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ker F 0 = FL
q

⇧1 ⇧2

ker F 1

ker F 2 · · ·

Fig. 2: Demonstration of Proposition 1. Here, we have ~0 =
kerF s ⊂ kerF s−1 ⊂ · · · ⊂ kerF 0 = FLq and Π1, . . . ,Πs

satisfy (12).

(c)
=

s∑
j=1

[rankF j − rankF j−1]

(
j−1∑
i=0

ρi

)
log q, (11)

where (a) is true because conditioning reduces the entropy,
(b) is true because uniform distribution on XA achieves the
maximum values for all the entropies in the summation, and
finally (c) is true because of the assumption we have made
in (7). Also, note that

∑j−1
i=0 ρi = θj(1 − θj) ≥ 0, where

θj ,
∑j−1
i=0 δi. This completes the proof.

B. Lower Bound for the Key Generation Capacity

In this section, we will present a scheme that achieves the
same secret key generation rate as we derived in the upper
bound stated in Lemma 2. But before that, let us state the
following proposition.

Proposition 1. Suppose s subspaces kerF i ⊆ FLq satisfy the
nested condition (6), i.e., ~0 = kerF s ⊂ kerF s−1 ⊂ · · · ⊂
kerF 0 = FLq . Then it is possible to find subspaces Π1, . . . ,Πs,

such that ∩i∈VΠi = ~0 for all V ⊆ [1 : s] where |V| ≥ 2 and
they also satisfy

Π1 ⊕ kerF 1 = FLq ,
Π2 ⊕Π1 ⊕ kerF 2 = FLq ,

...

Πs ⊕ · · · ⊕Π1 ⊕ kerF s = FLq (12)

where “⊕” is the direct sum of two disjoint subspaces. More-
over for i ∈ [1 : s] we have dim Πi = rankF i − rankF i−1.
For more clarification, Figure 2 demonstrates the proposition.

In our proposed achievability scheme, Alice uses superpo-
sition coding where she creates a vector

XA[t] = XA,1[t] + · · ·+XA,s[t], (13)

such that XA,i[t] ∈ Πi. Because of (12), {Π1, . . . ,Πs} is a
set of disjoint sub-spaces that span the whole space FLq . So
every vector XA[t] ∈ FLq can be uniquely decomposed as (13).
Now each XA,i[t] ∈ Πi can be considered as a vector that is
transmitted by Alice and will be received independently by
each trusted terminal or Eve with erasure probability θi =∑i−1
j=0 δi. Note that the vector XA,i[t] is correctly received by

the rth receiver only if Sr ≥ i.
So we may view the broadcast channel from Alice to the rest

of terminals as s independent packet erasure channels; where

Πi is the set of messages transmitted over the ith channel
(layer) and the erasure probability of the ith channel is θi.

Then we can proceed as follows. On the kth layer, we run
independently the scheme propose in [8], [24] for the secret
key sharing problem over an erasure broadcast channel (see
also [9, Appendix A] for more details). Then, we can state the
following result.

Lemma 3. The achievable SKG rate of the above scheme for
each layer k is given by Rdet

k = (1− θk)θk dim(Πk) log q. So
for the total achievable secrecy rate we have

Rdet
s =

s∑
i=1

θi(1− θi) dim (Πi) log q

=
s∑
i=1

[rankF i − rankF i−1] θi(1− θi) log q.

Observe that this matches the upper bound stated in
Lemma 2, and therefore yields a characterization of the
group key-agreement rate for deterministic channels, i.e., this
completes the proof of Theorem 1.

Remark 4. This result can be easily extended to the asym-
metric case where the channels to the legitimate users are not
statistically identical (but still independent). Moreover, notice
that the key-generation rate is the same for any m ≥ 2. This
is in fact similar to the erasure channel case [8] (see also [9,
Appendix A]), where the critical difference between m = 2
and m > 2 is that the key-reconciliation necessitated the use
of ideas from Network Coding.

VI. GROUP SECRET KEY AGREEMENT OVER
STATE-DEPENDENT GAUSSIAN BROADCAST CHANNELS

In this section, by using the results derived in the previous
sections, we will study the secret key generation capacity
among multiple terminals having access to a state-dependent
Gaussian broadcast channel. We will derive upper and lower
bounds for the secret key generation capacity. Although, the
proposed bounds are not matched in general, we will show that
they will match in the high-dynamic range, high-SNR regime
in a degree of freedom sense.

A. Upper Bound for the Key Generation Capacity
In order to upper bound the secrecy capacity for the

Gaussian broadcast channel, we cannot apply the result of
Corollary 1 directly because this result has been derived under
the assumption that the transmitted and received symbols are
discreet. However, the work in [18] has extended the results of
[14] for continuous channels. So by using [18, Theorem 3.2],
we can write an upper bound for the secrecy capacity similar
to Lemma 1 with the addition of a power constraint over the
transmitted symbols. Then we can state the following result,
as stated in Lemma 4.

Lemma 4. The key generation capacity of the Gaussian
broadcast channel given in (4) using public discussions is
upper bounded as follows

Cgaus
s ≤ 1

2
L

s∑
i=0

s∑
j=0

δiδj log

(
1 +

hiPmax

1 + hjPmax

)
. (14)
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Proof. Using [18, Theorem 3.2] and by proceeding similar
steps to the proof of Corollary 1 (see [8] and [9]), we can
write

Cgaus
s ≤ min

j∈[1:m−1]
sup
PX0

:

E[‖X0‖2]≤LPmax

I(X0;Xj |XE)

(a)
= sup

PXA
:

E[‖XA‖2]≤LPmax

I(XA;XB|XE),

where (a) is true because of the symmetry. Hence, there exists
an input distribution PXA

such that E
[
‖XA‖2

]
≤ LPmax

where the secrecy capacity is upper bounded as follows

Cgaus
s ≤ I(XA;XB|XE)

= I(XA; X̂B, SB|X̂E, SE)

= h(X̂B, SB|X̂E, SE)− h(X̂B, SB|X̂E, SE, XA)
(a)
= h(X̂B, SB|X̂E, SE)− h(X̂B, SB|XA)

= h(X̂B, SB|X̂E, SE)− h(SB|XA)− h(X̂B|SB, XA)
(b)
= h(X̂B, SB|X̂E, SE)− h(SB)− h(ZB)

= h(X̂B, X̂E|SE, SB) + h(SE, SB)

− h(X̂E, SE)− h(SB)− h(ZB)

= h(X̂B, X̂E|SE, SB)− h(X̂E|SE)− h(ZB).

where (a) is true since we have the Markov chain XB ↔ XA ↔
XE and (b) follows from the fact that the state variables are
independent of XA and given XA and SB the only uncertainty
left in X̂B is that of noise ZB. Now the above relation can be
more simplified as follows

Cgaus
s ≤

s∑
i=0

s∑
j=0

δiδjh(X̂B, X̂E|SE = j, SB = i)

−
s∑

k=0

δkh(X̂E|SE = k)− h(ZB)

=
s∑
i=0

s∑
j=0

δiδjh(
√
hiXA + ZB,

√
hjXA + ZE)

−
s∑

k=0

δkh(
√
hkXA + ZE)− h(ZB)

=
s∑
i=0

s∑
j=0

δiδjh(
√
hiXA + ZB|

√
hjXA + ZE)− h(ZB)

(a)
≤

s∑
i=0

s∑
j=0

δiδj
2

log
[
(2πe)L×

det
(

cov(
√
hiXA + ZB|

√
hjXA + ZE)

)]
− h(ZB), (15)

where (a) follows from the fact that for a fixed variance,
Gaussian distribution maximizes the entropy.

The inequality (a) in (15) is achieved when (
√
hiXA +

ZB|
√
hjXA + ZE) has a Gaussian distribution. A sufficient

condition for this to be satisfied is when XA, ZB, and ZE

are Gaussian and independent, namely, XA ∼ N(~0, PmaxIL),
ZB ∼ N(~0, IL), and ZE ∼ N(~0, IL). This observation makes

the calculation of
1

2
log
[
(2πe)L det

(
cov(

√
hiXA + ZB|

√
hjXA + ZE)

)]
much easier as it is equivalent to the evaluation of h(

√
hiXA+

ZB,
√
hjXA +ZE)−h(

√
hjXA +ZE) when XA, ZB, and ZE

are Gaussian and independent as shown below,
1

2
log
[
(2πe)L det

(
cov(

√
hiXA + ZB|

√
hjXA + ZE)

)]
=

= h
(√

hiXA + ZB,
√
hjXA + ZE

)
− h
(√

hjXA + ZE

)
=

L∑
k=1

h
(√

hiXA,k + ZB,k,
√
hjXA,k + ZE,k

)
− h
(√

hjXA,k + ZE,k

)
=
L

2

[
log
(
(2πe)2(1 + hiPmax + hjPmax)

)
− log

(
2πe(1 + hjPmax)

)]
,

where E
[
X2

A,k

]
= Pmax and E

[
Z2
B,k

]
= E

[
Z2
E,k

]
= 1 for

all k ∈ [1 : L].
Hence, the upper bound on the secrecy capacity reads as

follows

Cgaus
s ≤

s∑
i=0

s∑
j=0

δiδjL

2
log
[
(2πe)2(1 + hiPmax + hjPmax)

]
−

s∑
i=0

s∑
j=0

δiδjL

2
log [2πe(1 + hjPmax)]− L

2
log(2πe)

=
1

2
L

s∑
i=0

s∑
j=0

δiδj log

(
1 +

hiPmax

1 + hjPmax

)
,

where we are done.

B. Lower Bound for the Key Generation Capacity

Before stating our achievability scheme, let us first define a
“nested message set, degraded channel” wiretap scenario.

Definition 3. Assume a wiretap channel scenario where there
is a transmitter called Alice who broadcasts XA and there are
s+1 receivers Yi where the ith receiver receives Yi according
to the broadcast channel (XA, p(y0, . . . , ys|x),Y0×· · ·×Ys))
such that

p(y0, . . . , ys|xA) = p(ys|xA) · p(ys−1|ys) · · · p(y0|y1).

Suppose that Alice has s messages W1, . . . ,Ws where Wi ∈
{1, . . . , 2LRi} and Wi ∼ Uni([1 : 2LRi ]). The goal is that she
wants to broadcast these messages such that ∀i:
(i) each message Wi should be decodable by the receivers
Yi, . . . , Ys with a negligible error probability, and
(ii) all the receivers Y0, . . . , Yi−1 should be ignorant about the
message Wi, namely for the leakage rate we should have

R
(L)
leak,i ,

1

L
I(Wi+1, . . . ,Ws;Y

1:L
i ) ≤ εL,∀i ∈ [0 : s]. (16)

Now suppose that a multi-receiver wiretap scenario as
defined in Definition 3 consists of s+1 independent Gaussian
channels where the rth channel is defined as follows

Yr[t] =
√
hrX[t] + Zr[t], ∀r ∈ [0 : s], (17)
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where Zr[t] ∼ N(0, 1) and hr are some fixed constant
representing the channel gains such that h0 < · · · < hs. We
also assume that the channel input is subject to an average
power constraint Pmax, i.e., 1

L

∑L
t=1 E

[
X2[t]

]
≤ Pmax. Then

we can state the following result.

Lemma 5. Using a properly designed layered wiretap code
similar to [7], [10], we can achieve the following set of
rates for the “nested message set, degraded Gaussian wiretap
channel,”

Ri =
1

2

[
log

(
1 +

hiPi
1 + hiIi

)
− log

(
1 +

hi−1Pi
1 + hi−1Ii

)]
,

(18)

∀i ∈ [1 : s], where Ii ,
∑s
j=i+1 Pj .

Proof. In the following, we will describe a code construction
that achieves the rates stated in Lemma 5. Because it is very
similar to [7] and also due to space limit, we only present a
sketch of the proof for the theorem.

Assume that the code has s layers that correspond to each
channel where they are indexed from 1 up to s (the channel
Y0 should decode nothing). To each layer a power constraint
Pi is assigned such that

∑s
i=1 Pi ≤ Pmax. The transmitter

uses superposition coding to encode each message Wi that
corresponds to layer i; namely, it broadcasts

X[t] =
s∑
i=1

Xi[t],

over the channel described by (17). Then by receiving Yr,
the rth receiver uses successive decoding, that starts from the
layer 1 to decode X1 assuming the rest of the layers as noise
and subtracting X1 from the received vector after decoding.
Then it continues this process to decode the rest of layers.

More precisely we construct s codebooks Ĉi(2LR̂i , L) each
contains 2LR̂i codewords XL

i of length L by choosing in total
L2LR̂i symbols independently from the Gaussian distribution
N(0, Pi) where

R̂i =
1

2
log

(
1 +

hiPi
1 + hiIi

)
,

and Ii =
∑s
j=i+1 Pj . Each codebook Ĉi, 0 < i ≤ s, is divided

into 2LRi bins where

Ri =
1

2

[
log

(
1 +

hiPi
1 + hiIi

)
− log

(
1 +

hi−1Pi
1 + hi−1Ii

)]
.

At every layer i, each message is mapped into one bin, and
one codeword in the bin is randomly chosen. So, layer i can
transmits 2LRi messages. Following a similar argument as
stated in [7], [10], it can be shown that the above codebook
satisfies the requirement of Definition 3.

Remark 5. Note that all of the above discussions are also
valid for complex channels. The only difference is that there
will be no 1

2 coefficient before rates given by (18) and other
expressions should be updated accordingly.

Now, as described in the proof of Lemma 5, by using
a properly designed layered coding for the nested message
set, degraded channel wiretap scenario, we can convert the

Gaussian channel given in (4) to a set of s independent erasure
channels where the erasure of the messages for each channel
(layer) depends on the receiver channel state. In fact using
the layered coding scheme for the wiretap channel, we mimic
the orthogonality behaviour that we have for the deterministic
channel as described by (6) and (12).

To be more specific, we assume that Alice broadcasts an
L-length vector

XA[t] =
s∑
i=1

XA,i[t],

where she maps Wi (the messages corresponding to the ith
layer) to XA,i[t] according to the codebook described in the
proof of Lemma 5. From the proof we know that the receiver r
which observes the channel state Sr = i can decode messages
up to layer i and is ignorant about messages of layers above i.
So, equivalently, we can say that the message Wi experiences
erasure probability θi =

∑i−1
j=0 δj , when it passes through the

channel (4).
Now for each layer i, we run the interactive secret key

sharing scheme introduced in [8], [24] (also, see [9, Ap-
pendix A]) where Alice broadcasts an n-length sequence of
random messages, i.e., Wn

i . Then, by discussing over the
public channel, the trusted terminals reconcile their secret
messages to build a common key. The key generation rate
for each layer is ∆iLRi, so for a fixed power allocation we
achieve the following secrecy rate

Rgaus
s ≤

s∑
i=1

∆iLRi,

where Ri is defined in (18) and ∆i = (1− θi)θi.
The maximum secrecy rate is obtained by optimizing the

above rate over the power allocations {Pi}si=1. Thus we can
write

Rgaus
s =


max

∑s
i=1 ∆iLRi

subject to
∑s
i=1 Pi ≤ Pmax

Pi ≥ 0, ∀i ∈ [1 : s].

(19)

Because R1 is an increasing function of P1 when other Pi are
kept fixed and Ri does not depend on P1 for i > 1 we can
write the power constant inequality as an equality. We also
apply a change of variables to Problem 19 from {Pi} to {Ik}.
So we can rewrite (19) in the canonical form (see [25]) as
follows

Rgaus
s =

{
min −∑s

i=1 ∆iLRi

subject to −[Ik−1 − Ik] ≤ 0, ∀k ∈ [1 : s],
(20)

where for convenience we define I0 , Pmax, Is , 0, and we
have also

Ri =
1

2
log

(
1 + hiIi−1

1 + hiIi
· 1 + hi−1Ii

1 + hi−1Ii−1

)
.

In Section VII, we will focus on solving the optimization
problem (20).
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C. Discussion about the Complexity of the Proposed Scheme

In this section, we briefly discuss about the complexity of
the proposed secret key sharing algorithm. In more detail,
the algorithm consists of two main parts. First, as discussed
in Section VI-B, by applying a multi-layer wiretap code [7],
[10], a Gaussian broadcast channel is converted to a number
of different message-level erasure broadcast channels. Then
in the second part, for each layer, assuming a message-level
broadcast erasure channel, legitimate terminals create a shared
secret key among themselves where this scheme presented in
[8], [9], [22], [24]. Hence, we can break up the complexity
analysis of the proposed scheme into two parts.

For the complexity analysis of the second part, referring
to [8], [9], [22], [24], we can easily observe that each of
the legitimate nodes needs to perform O(n2L) operations
where n is the number of packets and L is the packet length.
Additionally, the total communication complexity, i.e., number
of transmitted bits, of this algorithm is O(n(n + L)) bits.
For the first part of the algorithm one needs to consider a
practical implementation of wiretap codes. For example we
can use the result of [26] where constructs such a wiretap
code. The encoding and decoding complexity of the proposed
wiretap code is linear in the packet length (i.e., L in our
setup) since it is an LDPC code. So, this part of the scheme
can at most add O(nL) operations to the complexity of each
node. Hence, to summarize, the total computation complexity
of all nodes remain the same as each of them needs O(n2L)
operations. Moreover, the total communication complexity of
the algorithm O(n(n+ L)) bits.

VII. SOLVING THE NON-CONVEX POWER ALLOCATION
PROBLEM

Here, we present how the optimization problem (20) can be
solved. Our final result is not in closed form but instead we
propose a recursive algorithm (i.e., a dynamic program) that
finds all the possible solutions of KKT5 conditions (which
provide necessary conditions for an optimal solution to the
optimization problem (20)) and find an optimum solution by
searching among them. By using the proposed algorithm, we
reduce the search space of the optimization problem (20)
from a multi-dimensional continuous space to a finite elements
set; i.e., the set of solutions to the KKT conditions. In this
sense, the final result is exact (the proposed algorithm is not
a numerical approximation), but it is hard to describe the
solution in a single closed form equation for all possible
parameters involved in the secrecy problem (e.g., channel
gains, probability distribution over states, etc.). However, note
that for each set of given problem parameters, it is possible
to state the final solution in terms of these given parameters
(but here we only focus on deriving the final “value” of the
solution, not its “expression”). To find the optimal solutions
of the above-mentioned optimization problem, we proceed as
follows.

Because the constraints of optimization problem (20) are
affine, we can use the KKT conditions to derive a set of

5Karush–Kuhn–Tucker conditions (e.g., see [25]).

Variable Definition
θk (∀k ∈ [1 : s]) The effective erasure probability that the mes-

sage Wk (message of kth layer) experience
which is

∑k−1
i=0 δi.

∆k (∀k ∈ [1 : s]) A dummy variable which is θk(1− θk).

Ik (∀k ∈ [0 : s]) The contribution of the interference of all
layers above k to the decoding of the kth
layer which is

∑s
i=k+1 Pi. For convenience

we define I0 = Pmax and Is = 0.
hk (∀k ∈ [0 : s]) The square of channel gains. Remember that

h0 < · · · < hs.
λk (∀k ∈ [1 : s]) The Lagrangian multipliers of optimization

problem (20).
αk (∀k ∈ [1 : s− 1]) = (hk+1 − hk)∆k+1.

βk (∀k ∈ [1 : s− 1]) = (hk − hk−1)∆k .

{I∗k}
s
k=0 With an abuse of notation denotes any solution

to the set of KKT conditions stated in (21).
{I∗∗k }

s
k=0 The optimum power allocation of the opti-

mization problem (20) that also satisfies (21).
r
(1)
k (∀k ∈ [0 : s]) The root of the numerator of F (1)(x) defined

in (23). Note that we define r(1)0 , Pmax and
r
(1)
s , 0.

r
(2)
k,1, r

(2)
k,2 The real roots (if exist) of the numerator of

F (2)(x) defined in (24).

TABLE I: Explanation for some of the important variables.

necessary conditions for the optimum power allocation (e.g.,
see [27, Chapter 5]). By defining the Lagrangian L as

L(P1, . . . , Ps, λ1, . . . , λs) = −
s∑
i=1

∆iLRi+

s∑
i=1

λi[Ii−Ii−1],

and applying the KKT theorem (e.g., see [25, Chapter 5]), we
write a set of necessary conditions for the optimal solution of
(20) as follows

∂L
∂Ik

= 0, ∀k ∈ [1 : s− 1],

λk[Ik − Ik−1] = 0, ∀k ∈ [1 : s],

Ik ≤ Ik−1, ∀k ∈ [1 : s],

λk ≥ 0, ∀k ∈ [1 : s].

(21)

By taking the derivative of L with respect to Ik, ∀k ∈ [1 :
s− 1], and doing some algebra we get

0 =
∂L

∂Ik
=

(hk+1βk − hk−1αk)Ik − (αk − βk)

(ln 2)(1 + hk−1Ik)(1 + hkIk)(1 + hk+1Ik)

+ (λk − λk+1) = F
(1)
k (Ik) + (λk − λk+1), (22)

where αk , (hk+1 − hk)∆k+1, βk , (hk − hk−1)∆k

and F (1)
k (Ik) is defined accordingly. Notice that because Ik’s

are positive variables the denominator of F (1)
k (Ik) is strictly

positive. For the ease of reference, some of the important
variables of our problem are gathered in Table I.

The main idea of our proof is to propose a recursive
algorithm that first finds all the solutions of the KKT equations
(21), (with an abuse of notation) each is denoted by {I∗k}sk=0.
Then among these solutions finds the one that maximizes the
secrecy rate given by (20), which is denoted by {I∗∗k }sk=0.

To this end, in every iteration, the proposed algorithm
picks some k (for that I∗k is not determined yet) and then
determine the sign of F (1)

k (x) (or as will be discussed later,



1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2612649, IEEE
Transactions on Information Forensics and Security

10

for some cases determine the sign of F (2)
k (x) which will be

defined in (24)). Then using (22) (or in some cases using
(24)) in addition to the complementary slackness condition,
it determines whether we have to examine the following three
cases: (i) I∗k = I∗k−1, (ii) I∗k = I∗k+1, or (iii) the value of I∗k is
determined in this iteration. Hence, at the end of each iteration
the size of the optimization problem is reduced by one (either
I∗k is determined in this iteration or is equal to the I∗k−1 or
I∗k+1). Ignoring the details for a moment, we can repeat the
above procedure until all values of I∗k are determined. These
sets of I∗k ’s are the solutions to the KKT conditions (21).

Considering more details, we can proceed as follows. First,
let r(1)

k to be the root of the numerator of F (1)
k (x) (assuming

hk+1βk − hk−1αk 6= 0), namely,

r
(1)
k ,

αk − βk
hk+1βk − hk−1αk

, ∀k ∈ [1 : s− 1], (23)

and by convention set r(1)
0 , Pmax and r(1)

s , 0. Then we can
observe the following different situations, as stated in Case 1.

Case 1 (Linear Case6). Based on different values of problem
parameters, for each k ∈ [1 : s − 1], we have various cases
for a solution I∗k that satisfies (21) as follows:
(1) If hk+1βk−hk−1αk = 0 (which means that the numerator
of F (1)

k (x) is a constant and r(1)
k is not defined), then because

of the ordering over channel gains we should have αk > βk.
Now, because of (22) and since λk’s are non-negative, we
should have λ∗k > 0 which by using the complementary
slackness condition leads to I∗k = I∗k−1. This is equivalent
to P ∗k = 0.
(2) If αk < βk then we get hk+1βk > hk−1αk, so we have
r

(1)
k < 0 and F

(1)
k (x) > 0 for x ≥ 0. Because of (22), we

conclude that λ∗k+1 > 0 which by using the complementary
slackness condition results in I∗k = I∗k+1, i.e., P ∗k+1 = 0.
(3) If hk+1βk < hk−1αk we can conclude that αk > βk so we
have r(1)

k < 0 and F
(1)
k (x) < 0 for x ≥ 0. Because of (22),

we conclude that λ∗k > 0 which by using the complementary
slackness condition results in I∗k = I∗k−1, i.e., P ∗k = 0.
(4) If αk > βk and hk+1βk > hk−1αk then we have r(1)

k > 0.
Moreover, we have F (1)

k (x) > 0 for x > r
(1)
k and F (1)

k (x) < 0

for x < r
(1)
k . Now, there exists the following different cases:

(a) If Pmax < r
(1)
k then we have F (1)

k (x) < 0 for x ≤ Pmax.
From (22), we conclude that λ∗k > 0 which leads to I∗k =
I∗k−1, i.e., Pk = 0.

(b) If 0 < r
(1)
k ≤ Pmax then we have F (1)

k (x) < 0 for x <
r

(1)
k and F (1)

k (x) > 0 for x > r
(1)
k . Now I∗k can be equal

to r
(1)
k without any further requirement. However, if we

have r(1)
k < I∗k then we should have I∗k = I∗k+1. Similarly

if we have I∗k < r
(1)
k then we have to have I∗k = I∗k−1.

The above different cases are derived under the assumption
that we do not have any extra information about a solution
{I∗k}. In particular, prior to solving the KKT conditions, we
do not know whether we have I∗k = I∗k±l (for some valid k

6Here by the linear case, we mean that the numerator of F (1)
k (Ik) in (22)

is a linear function of Ik .

and l) or not. Note that due to the ordering on the optimal
solution I∗k ’s imposed by (20), if we have I∗k = I∗k+l then we
should also have I∗k = I∗k+1 = · · · = I∗k+l.

Now suppose that, by some mean (e.g., from the previous
iterations of our proposed algorithm for finding the solutions
of KKT equations (21)), we know that I∗k = I∗k+l. This
knowledge enables us to reduce the size of the optimization
problem (20). Notice that after having this information, the
derivative of the Lagrangian L with respect to Ik is not given
by (22) anymore. More precisely, let us assume that I∗k = I∗k+l.
Then, taking the derivative of L with respect to Ik and by
doing some algebra, we can write

0 =
∂L

∂Ik
=

=
∆k(1 + hk+lIk)(1 + hk+l+1Ik)(hk − hk−1)

(ln 2)(1 + hk−1Ik)(1 + hkIk)(1 + hk+lIk)(1 + hk+l+1Ik)

− ∆k+l+1(1 + hk−1Ik)(1 + hkIk)(hk+l+1 − hk+l)

(ln 2)(1 + hk−1Ik)(1 + hkIk)(1 + hk+lIk)(1 + hk+l+1Ik)

+ (λk − λk+l+1) = F
(2)
k (Ik) + (λk − λk+l+1). (24)

Notice that for all values of l ∈ [1 : s − k], the numerator
of F (2)

k (Ik) is a quadratic function in Ik and the denominator
is strictly positive for Ik ≥ 0 because hk’s are positive real
quantities.

Similar to the Case 1, here in this case, we can also find
the real roots r(2)

k,1 and r
(2)
k,2 of the numerator of F (2)

k (x) and
find the sign of the function F

(2)
k (x) for different values of

x ∈ [0, Pmax] based on the place of these roots. Hence, based
on the real roots of the numerator of F (2)

k (x), we can write
a set of different conditions similar to Case 1, as stated in
Case 2.

Case 2 (Quadratic Case7). Here, we do not write all the
different possibilities for (24) because the idea is very similar
to Case 1. Instead, we explain the main part of the procedure
in the following. In general, based on the position of the roots
of numerator of F (2)

k (x), we can potentially have up to five
different cases. To clarify the method, for example, consider the
situation where the numerator of F (2)

k (x) has two distinct real
roots r(2)

k,1 < r
(2)
k,2 where r(2)

k,1, r
(2)
k,2 ∈ [0, Pmax]. Then we have

to consider the following five different cases for the solution
I∗k : (1) I∗k ∈

[
0, r

(2)
k,1

)
, (2) I∗k = r

(2)
k,1, (3) I∗k ∈

(
r

(2)
k,1, r

(2)
k,2

)
,

(4) I∗k = r
(2)
k,2, and (5) I∗k ∈

(
r

(2)
k,2, Pmax

]
. In the items (1), (3),

and (5) one can find the sign of F (2)
k (x) in the corresponding

interval and based on that determine whether we should have
I∗k = I∗k−1 or I∗k = I∗k+l+1.

Remark 6. It is worth to emphasize that the structure of
the optimization problem (20) is such that the denominator
of F (1)

k (x) and F (2)
k (x) are always strictly positive for x ≥ 0.

Moreover, the numerator of F (1)
k (x) is always at most a

linear function of x and that of F (2)
k (x) is always at most

a quadratic function in x. This fact significantly simplifies

7Here by the quadratic case, we mean that the numerator of F (2)
k (Ik) in

(24) is a quadratic function of Ik .
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finding the solutions of KKT equations (21) and hence solving
the optimization problem (20).

The above discussion for different possible cases based
on the numerator roots of F (1)

k and F
(2)
k can be applied to

any specific instance of the optimization problem (20). As
briefly explained before, the main idea is to apply a recursive
algorithm that finds the set of solutions of (21) iteratively by
determining variables Ik’s one by one. This procedure can also
be considered as reducing the size of the optimization problem
(20) (i.e., number of states) by one in every iteration.

To better explain our proposed method, we present the
pseudo code of our algorithm in Algorithm 1 and Algorithm 2.
For more clarification, in addition to the comments inside the
pseudo code, the important variables of the pseudo code are
explained separately in Table II.

Putting it together, we can describe our algorithm as follows
(see also Algorithm 1 and Algorithm 2). First, Algorithm 1
initializes a data structure d(i) for each i ∈ [0 : s] which
contains the required information about I∗i (see Lines 1 to 8
of Algorithm 1). Then it calls Algorithm 2 that is a recursive
function.

Starting from the original KKT conditions, at every iter-
ation, Algorithm 2 picks a number k (such that Ik is not
determined yet) and apply Case 1 or Case 2 (depending if it
is linear or quadratic case) to that particular Ik (see Lines 3, 6
and 16 of Algorithm 2). By doing so, the size of the original
KKT conditions (i.e., number of undetermined variables Ik)
is reduced by one and we may have up to five (in fact up to
three if Case 1 holds and up to five if Case 2 holds) new set
of KKT conditions to be solved.

Now, we can repeat the above process on each of these new
set of conditions and go forward iteratively (see Lines 13 and
23 of Algorithm 2). This procedure is like discovering a tree
starting from some point as root (the root is determined by the
first k ∈ [1 : s−1] picked up by the algorithm). Note that many
of these new set of conditions do not lead to valid solutions
that satisfy the original KKT conditions (21). This will be
determined later as the algorithm proceeds by observing some
contradictions on the intervals of Ik’s. This process continues
until we obtain problems of zero size (that have all variable
Ik’s determined and satisfy the original KKT conditions (21);
Line 29 of Algorithm 2) or at some point in the middle of
the algorithm the determined Ik’s up to that point violate the
KKT conditions (so this particular branch will be discarded;
Lines 12 and 22 of Algorithm 2).

The above-mentioned algorithm enables us to find all of
the solutions to KKT conditions (21). Then because the
KKT equations provide a necessary condition on the optimal
solution, it is sufficient to check among all of the solutions
of KKT equations to find the optimal power allocation for
the optimization problem (20) (Line 10 of Algorithm 2).
Consequently, the search space of the original optimization
problem is reduced from the continuous space Rs−1 to a set
of size at most 5s−1 elements. Note that this is the worst case
analysis and in practice the size of the set can be much smaller

Variable Description
d(i) An array that contains the available informa-

tion about the solution I∗ of (21) at every step
of the algorithm. At the beginning, we have
i ∈ [0, s]. However, the size of the problem
becomes smaller in every iteration.

d(i).l and d(i).u Lower and Upper bounds on the indices of
states such that we have I∗

d(i).l
= · · · =

I∗
d(i).u

.

d(i).min and d(i).max Determine the interval that I∗k ’s belongs to,
i.e., I∗k ∈

[
d(i).min, d(i).max

]
where k ∈[

d(i).l : d(i).u
]
.

d(i).determined Let k = d(i).l. If the value of I∗k
is completely determined, we have
d(i).determined = “true” otherwise it
is equal to “false”.

SolSet A set that at the end of the algorithm contains
all of the solutions (data structures d) that
satisfy the KKT conditions (21).

TABLE II: Description of the important variables in Algo-
rithms 1 and 2.

than this number8.

Algorithm 1 Finding all of the solutions that satisfy KKT
conditions (21).

Require: s, {hi}si=0, {∆k}sk=1, Pmax

1: for all i ∈ [0 : s] do . Initialization
2: d(i).l = d(i).u = i . In general we may have
I∗d(i).l = · · · = I∗d(i).u

3: d(i).min = 0 . Initializing the lower bound on I∗i
4: d(i).max = Pmax . Initializing the upper bound on
I∗i

5: d(i).determined = false . At the beginning, the
value of I∗i is not determined

6: end for
7: d(0).min = Pmax; d(0).determined = true . Also

part of the initialization
8: d(s).max = 0; d(s).determined = true . Also part

of the initialization
9: SolSet = RECURSION(d, {hi}si=0, {∆k}sk=1)

10: For all I ∈ SolSet find the one which maximizes the
achievable rate R; call it I∗∗

11: return I∗∗

12: end

In the following, in Lemma 6 and in Section VII-A, we
present two special cases for the optimization problem (20)
that is insightful.

Lemma 6. Consider the set of {r(1)
k }sk=0 as defined in (23).

If we have 0 = r
(1)
s < r

(1)
s−1 < · · · < r

(1)
1 < r

(1)
0 = Pmax,

then the KKT conditions given by (21) have a unique solution.
Moreover, the optimal power allocation is determined by
I∗∗k = r

(1)
k for all k ∈ [1 : s− 1].

Proof. For the proof of this lemma refer to [9, Appendix B].

8In the examples discussed in the following, the number of solutions is
something like 2 or 3.
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A. High-dynamic range, high-SNR regime

In this section, we show that our proposed achievability
scheme, stated in Section VI-B, is optimal for the “high-
dynamic range, high-SNR regime” in a degrees of freedom
sense. We first give a formal definition of degrees of freedom
in our setup as follows. The degrees of freedom for secret key
sharing over a state dependent Gaussian broadcast channel is
defined as

DoFs = lim
Q→∞

Cgaus
s

1
2 logQ

where hi = Qγi for i ∈ [0 : s], γi > 0 and γi > γi−1.
Clearly, as Q → ∞, hi � hi−1 (high-dynamic range)

and hi � 1 (high-SNR). The following theorem completely
characterizes DoFs, and hence proves the optimality of our
proposed achievability scheme in the high-dynamic range and
high-SNR regime.

Lemma 7. The degrees of freedom (DoFs) for secret key
sharing over a state dependent Gaussian broadcast channel
is given by: DoFs = L

∑s
i=1 (γi − γi−1) ∆i.

Proof. We prove the theorem in two steps. First, we show a
lower bound on DoFs using the proposed achievability scheme
in Section VI-B, and then we show a matching upper bound
on DoFs using the upper bound on the secret key generation
capacity as stated in Lemma 4.

Lower bound on DoFs: If hi � hi−1 for all i, we have
r

(1)
i

·
= Q−γi . Then the ordering condition stated in Lemma 6

is satisfied and as a result we have I∗∗i = r
(1)
i . Using this

observation, we can derive a lower bound on DoFs as shown
below,

DoFs = lim
Q→∞

Cgaus
s

1
2 logQ

(a)

≥ lim
Q→∞

L
∑s
i=1 ∆i

(
1
2 log

(
1+hir

(1)
i−1

1+hir
(1)
i

· 1+hi−1r
(1)
i

1+hi−1r
(1)
i−1

))
1
2 logQ

= L
s∑
i=1

∆i (γi − γi−1) (25)

where (a) follows from hi � hi−1 and Lemma 6.
Upper bound on DoFs: An upper bound on DoFs can

be derived as shown below,

DoFs = lim
Q→∞

Cgaus
s

1
2 logQ

(a)
≤ L

∑
i>j

δiδj (γi − γj)

= L
s∑
i=1

i−1∑
j=0

i∑
k=j+1

(γk − γk−1) δiδj

(b)
= L

s∑
k=1

s∑
i=k

k−1∑
j=0

(γk − γk−1)δiδj

= L
s∑

k=1

∆k(γk−1 − γk)

where (a) follows from Lemma 4 and (b) follows by exchang-
ing the order of the summations. The above upper bound on
DoFs matches the lower bound in (25) and this completes the
proof of the theorem.

Algorithm 2 The recursive core part of the algorithm that is
called by Algorithm 1.

1: function RECURSION(d,{hi}si=0, {∆k}sk=1)
2: SolutionSet = ∅
3: Find an index j such that d(j).determined = false
4: if there is such j then
5: k = d(j).l
6: if d(j).l = d(j).u then . Linear case

(I∗k 6= I∗k+1)
7: Find the root r(1) of the numerator of F (1)

k (x)
defined in (23)

8: Based on the value of r(1), break the interval
[d(j).min,d(j).max] if necessary

9: for all possible subinterval of the interval
[d(j).min,d(j).max] do

10: Find the sign of F (1)
k (x) in this subinterval

11: According to the sign of F
(1)
k (x) (and

based on Case 1), update d(j).l, d(j).u, d(j).min,
d(j).max, and d(j).determined, but to a new data struc-
ture d′

12: if d′ is consistent up to this point then .
if ∀i we have d′(i).min ≤ d′(i).max

13: SolutionSet ← SolutionSet ∪ RE-
CURSION(d′, {hi}si=0, {∆k}sk=1)

14: end if
15: end for
16: else . Quadratic case
17: Find the roots r(2)

1 and r
(2)
2 of the numerator

of F (2)
k (x)

18: Based on the values of r(2)
1 and r(2)

2 , break the
interval [d(j).min,d(j).max] if necessary

19: for all possible subinterval of the interval
[d(j).min,d(j).max] do

20: Find the sign of F (2)
k (x) in this subinterval

21: According to the sign of F (2)
k (x), update

d(j).l, d(j).u, d(j).min, d(j).max, and d(j).determined,
but to a new data structure d′

22: if d′ is consistent up to this point then .
if ∀i we have d′(i).min ≤ d′(i).max

23: SolutionSet ← SolutionSet ∪ RE-
CURSION(d′, {hi}si=0, {∆k}sk=1)

24: end if
25: end for
26: end if
27: else . If all d(j)’s are determined
28: if the found solution is consistent then . if ∀i we

have d(i).min ≤ d(i+ 1).min
29: SolutionSet = {d}
30: end if
31: end if
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Fig. 3: The achievable rate and the upper bound as a function
of h1 with Pmax: (a) Pmax = 0.01, (b) Pmax = 10 (see
Example 1).

Algorithm 3 Algorithm 2, continue

32: return SolutionSet
33: end function

B. Numerical Evaluations

In this section, we numerically evaluate the performance of
the secret key sharing scheme proposed in Section VII for a
few examples and compare it with the upper bound stated in
Lemma 4.

Example 1. Consider a setup with 3 states (s = 2) where
h0 = −5dB, −5dB < h1 < 30dB and h2 = 30dB. The
probability distribution across the states is assumed to be
uniform. Figure 3 shows the achievable rate and the upper
bound as a function of h1 with the following choices of Pmax:
(a) Pmax = 0.01 and (b) Pmax = 10. Clearly, there is a
gap between the upper bound and the achievable rate. As it
is mentioned before, the proposed scheme is not optimal in
an absolute sense, but only in a degrees of freedom sense as
proved in Section VII-A.

Example 2. Consider a setup with 4 states where h0 = −5dB,
h3 = 30dB, h1 = min[g1, g2] dB and h2 = max[g1, g2] dB
where −5dB < g1, g2 < 30dB. The probability distribution
across the states is assumed to be uniform. Figure 4 shows
the achievable rate and the upper bound as a function of g1

and g2 with Pmax = 10. Similar to Example 1, this illustrates
the absolute gap between the upper bound and the achievable
rate.

Example 3. Consider a setup with 36 (equiprobable) states,
uniformly spaced in the range −5dB to 30dB (i.e., hi =
(−5 + i)dB, i ∈ [0 : s]). Figure 5 shows the fraction of
Pmax allocated to each state by the proposed scheme for
Pmax ∈ {0.1, 1, 10, 100}.

The above examples illustrate different aspects of the pro-
posed scheme: the gap with respect to the upper bound and
the distribution of power across the states. In general, these
aspects depend on the setup parameters. For a given setup,
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Fig. 4: The achievable rate (lower surface) and the upper bound
(upper surface) as a function of g1 and g2 with Pmax = 10 in
a setup with 4 equiprobable states (see Example 2).

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

State index

F
ra

c
ti
o

n
 o

f 
P

m
a

x
  

a
ll
o

c
a

te
d

 

 

P
max

 = 0.1

P
max

 = 1

P
max

 = 10

P
max

 = 100

Fig. 5: Fraction of Pmax allocated to each layer by the
proposed scheme as explained in Example 3.

the numerical implementation of our proposed scheme can be
used for efficient evaluations, even with a large number of
states (e.g., 36 states in Example 3).

VIII. DISCUSSION, OPEN QUESTIONS AND FUTURE
DIRECTIONS

Here, in this section we bring forward discussion about
multi-party secret key sharing problem, open questions and
possible future directions.

First, the SKG capacity problem among multiple terminals
over a state-dependent Gaussian channel in the presence of a
passive eavesdropper is still unsolved. But, the optimality of
the proposed multi-party secret key sharing scheme has been
shown for deterministic channels (that includes the erasure
channels as a special case). By having intuition from this re-
sult, the achievability scheme for the Gaussian state-dependent
channel is based on the message level erasure, simulated by
using the wiretap code. However, in our outer bound on the
SKG capacity, we do not have such an assumption and this
can be a reason that explains the gap between our achievability
scheme and outer bound.

Similar ideas used in this work for the secret key sharing
problem over erasure channels can also be applied for the
secret communication over these channels, e.g., see [28].
However, in our work, we go beyond and used these ideas to
propose a coding scheme for multi-terminal secret key sharing
over the Gaussian state-dependent broadcast channel (in the
presence of public discussion). On the other hand, this is still
open whether the same connection can be obtained between
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secret communication over erasure and state-dependent Gaus-
sian channels or not.

In our achievability scheme, we use public channel to send
feedback from all the receivers to Alice. However, it is worth
mentioning that although the public channel is available and
without cost, we use it to communicate only the channel state
which is a limited feedback; but not to transmit all the output
feedback. Hence, it is possible to adopt our protocol to use
ACK/NAK (e.g., similar to [24]) instead of public channel.
However, the resulting protocol maybe not optimal even for
the deterministic channels.

We would like to emphasize that this thread of work is
not pure theoretical and there have been some attempts to
implement these ideas (e.g., see [21], [22], [23], [24]). As an
example, [24] reports to create shared secret key in a test-bed
containing 5 nodes at rate 10 kbit/sec, with their secrecy being
independent of the adversary’s computational capabilities.

Finally, in this work we do not claim that our proposed
scheme is a complete replacement of existing crypto-systems
that rely on the adversarys computational limitations. How-
ever, if it is used in collaboration with such systems it can
add an extra layer of security to the system in the physical
layer.
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