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Abstract—We consider the problem of private information
retrieval (PIR) where a single user with private side information
aims to retrieve multiple files from a library stored (uncoded)
at a number of servers. We assume the side information at the
user includes a subset of files stored privately (i.e., the server
does not know the indices of these files). In addition, we require
that the identity of requests and side information at the user
are not revealed to any of the servers. The problem involves
finding the minimum load to be transmitted from the servers to
the user such that the requested files can be decoded with the
help of received and side information. By providing matching
lower and upper bounds, for certain regimes, we characterize
the minimum load imposed to all the servers (i.e., the capacity
of this PIR problem). Our result shows that the capacity is the
same as the capacity of a multi-message PIR problem without
private side information, but with a library of reduced size. The
effective size of the library is equal to the original library size
minus the size of side information.

Index Terms—Private information retrieval, side information,
MDS codes.

I. INTRODUCTION

Private Information Retrieval (PIR) is the problem of down-
loading contents from a library stored at a number of servers,
without revealing the indices of requested contents to any of
the servers. This problem was first considered in the computer
science society, from a computational complexity viewpoint
[1], [2], which resulted in elegant cryptographic PIR schemes
even for the simple scenario of a single user connected to a
single server. Recently, in [3], the capacity of this problem has
been characterized from an information theoretic perspective1.
Here, the capacity refers to the supremum of the number of
decoded bits per each downloaded bit. The setup considered
in [3] consists of multiple non-colluding databases (servers)
having access to a common library, from which a single
user requests one file, via a shared link. Interestingly, as
shown in [3], the user can wisely send queries to the non-
cooperative servers so that the aggregate load imposed to
servers is minimized, while no server gets any information
about the requested file index. Following the success of [3]
in characterizing the exact capacity of the problem, many
works have investigated extensions of this setup, such as coded

1This notion of information theoretic privacy is much stronger than the
notion of cryptographic privacy used in the computer science society.

databases [4], [5], colluding databases [6], multi-message PIR
[7], adversarial PIR [8], PIR with asymmetric traffic at servers
[9], and private function retrieval [10], [11].

An important extension to the PIR problem is the case when
the user has access to some form of stored data. This data can
be provided by caching data during network off-peak hours
(known as the Cache Content Placement phase), to reduce the
required load of servers when the actual request arrives (known
as the Content Delivery Phase). The first work considering this
line is [12], which characterizes the capacity of a public cache
setup for a multi-server scenario2. In contrast, [13] considers a
PIR problem with private cache where the servers do not know
the cache contents. Moreover, [14] considers a scenario where
the cache content placement is done via the same servers used
in the content delivery phase, hence resulting in a partially
known cache scenario, i.e., each server only knows which
contents itself has sent during the cache content placement
phase.

While in the cache aided PIR problem one can design the
cache contents, in the PIR problem with side information it
is assumed that the user has access to a given subset of the
library files. Along this direction, the authors in [15] consider
a single server scenario with private side information, and
characterize the capacity by reducing the PIR setup to an
index coding problem. The work [16] extends this result to
the original multiple server setup with a user having a private
side information.

In this paper, we consider a new PIR scenario, namely multi-
message PIR with private side information. In this setup we
assume that the user requires multiple messages and at the
same time has access to a private side information, which
is a subset of the files in the library. This generalized setup
includes the scenarios considered in [7] (i.e., multi-message
PIR without any side information) and [16] (i.e., single-
message PIR with private side information) as its special cases.
We propose lower and upper bounds on the required load,
which match in some regimes of problem parameters, and thus,
characterize the PIR capacity of those regimes. Specifically, we
establish that if the user has access to a private side information
of size M files, then the capacity of the problem is the same

2By public we mean that all the servers know the cache contents.



as the capacity of the multi-message PIR problem (see [7])
without any side information, but with a library of size reduced
by M . This result is a generalization of the same finding
in [16] for the single-message PIR setting, and suggests the
following conjecture: The capacity of any PIR problem with
private side information of size M is the same as capacity of
the same problem without side information, but with a library
size reduced by M .

The structure of paper is as follows. In Section II we
describe the problem setup. In Section III our main result for
the capacity of a multi-message PIR problem with private side
information is stated. Sections IV and V provide the achiev-
ability and converse proofs, respectively. Finally, Section VI
concludes the paper.

II. PROBLEM SETUP

Consider a single user connected to N servers having access
to a library of K files {W1, . . . ,WK}, where each file consists
of L symbols chosen independently and uniformly at random
from a finite field F, i.e., Wi = (wi(1), . . . , wi(L)). We
assume the user has a private side information which contains
M files from the library, denoted by WS , {Wi : i ∈ S},
S ⊆ [1 : K], |S| = M , where the servers do not know
the index set S. The user wishes to retrieve P new file
WP , {Wi : i ∈ P}, P ⊆ [1 : K], |P| = P , where
P ∩ S = ∅. To this end, the user sends a set of queries
QS,P , {QS,P

n , n ∈ [1 : N ]}, where server n just receives
QS,P

n without having any access to other queries (this is known
as the non-colluding servers assumption). The queries should
be designed such that the servers do not obtain any information
about neither the requested file index set P nor the side
information index set S as formally stated in the following

I(QS,P
n ;P,S) = 0, ∀n ∈ [1 : N ], (privacy constraint).

After receiving the queries, each server n ∈ [1 : N ] sends the
answer AS,P

n which is a function of library contents W1:K and
the query QS,P

n received at that server. The answers must be
designed such that there exists a decoding function Ψ which
satisfies

Ψ(AS,P
[1:N ], Q

S,P
[1:N ],WS) = WP , (decodability constraint).

The objective is to characterize the minimum required
download symbols defined as follows

DPSI(N,K,P,M) , inf
1

PL

N∑
n=1

H(AS,P
n ),

so that the privacy and decodability constraints are satisfied,
where the infimum is taken over all possible strategies. Equiva-
lently, the PIR capacity can be defined as CPSI(N,K,P,M) ,

1
DPSI(N,K,P,M)

.
Note that in the two special cases of P = 1 and M = 0 our

setup reduces to those studied in [16] and [7], respectively.

III. MAIN RESULT

In this paper, we characterize the capacity of a multi-
message PIR problem with side information. Our main result
is formally stated in Theorem 1.

Theorem 1. For P ≥ K−M
2 we have

DPSI(N,K,P,M) = 1 +
K −M − P

PN
. (1)

Moreover, for P ≤ K−M
2 and K−M

P ∈ N we have

DPSI(N,K,P,M) =
1−

(
1
N

)(K−M)/P

1−
(

1
N

) . (2)

It is worth mentioning that Theorem 1 can be equivalently
stated as

DPSI(N,K,P,M) = DPSI(N,K −M,P, 0),

under the assumptions of theorem, where DPSI(N,K −
M,P, 0) is characterized in [7]. This implies that for the multi-
message PIR problem, introducing private side information of
size M into the problem setup reduces the problem’s capacity
to the capacity of a multi-message PIR problem without side
information but with a library of size K −M . Note that our
result generalizes the same finding reported in [16] for the
single message PIR problem with side information.

The above library size reduction effect would be trivial if
the privacy constraint was not required for side information.
However, we prove that the same performance can be achieved
even with preserving the privacy constraint for side informa-
tion. The main ingredient of the proposed achievable scheme
is to use an outer layer of an MDS code to leverage the private
side information available at the user.

IV. THE ACHIEVABILITY PROOF

Let us first start with a motivating example for the case of
P ≥ K−M

2 .

Example 1. Suppose we have N = 2 servers, K = 4 files,
M = 1 file as side information, and the user requests P = 2
new files. First, we review the achievable scheme proposed
in [7] which is designed for the M = 0 case, i.e., no side
information. In their scheme, each file contents is permuted
independently and uniformly at random, resulting in permuted
files A, B, C, and D. Moreover, it is assumed that these
permutations are not known by the servers. Next, each of
the files is partitioned into N2 = 4 equal-sized chunks, i.e.,
A = (a1, . . . , a4), B = (b1, . . . , b4), C = (c1, . . . , c4), and
D = (d1, . . . , d4).

Their scheme consists of two phases. Suppose the user
requires to privately retrieve files A and B. In the first phase,
each server sends a chunk from each file, i.e., Server 1 sends
a1, b1, c1, d1 and Server 2 sends a2, b2, c2, d2. In the second
phase, the scheme uses a Reed-Solomon generator matrix in
Fq as follows

G2×3 =

[
1 1 1 1
1 2 3 4

]
.



The user generates two new matrices G1 and G2 by applying
two independent random permutations on the columns of G.
Then, the user requests from the first and second servers

G1

[
a3 b3 c2 d2

]T
and G2

[
a4 b4 c1 d1

]T
,

respectively. Since user has received c2 and d2 from the second
server in the first phase, it can decode a3 and b3 from the
above two linear equations sent by the first server in the
second phase. Similarly, it can decode a4 and b4. Thus, the
user has retrieved files A and B. This scheme results in the
load of DPSI(N = 2,K = 4, P = 2,M = 0) = 3/2 per
decoded file.

Now, suppose the user has access to a private side in-
formation of size M = 1. We use the fact that the user
can construct some of the above transmissions from its side
information directly. In the above, Server 1 sends 6 coded
chunks where one of the file chunks in the first phase is already
available as side information, which can be used to reduce
the load of the first server. Since the side information should
remain private to the server, we employ an MDS generator
matrix G5×6. Then Server 1 sends 5 linear equations of the
original 6 coded chunks with coefficients obtained from the
rows of G5×6. By removing the term already available as side
information, the user can form a linear system of 5 equations
to decode the remaining chunks. The same procedure is
followed by the second server. This results in the load of
DPSI(N = 2,K = 4, P = 2,M = 1) = 5/4 per decoded
file. Notice that as stated in Theorem 1, this scheme achieves
the optimal load.

�
Although the above example was stated for the case P ≥

K−M
2 , since the main idea of introducing the role of side

information into the achievable scheme for the other case of
P ≤ K−M

2 is the same, we skip presenting an example for
this case. In the following, we explain the general achievable
scheme.

The proposed scheme is along the same line introduced
in [16]. Let us first review the concept of linear PIR
schemes. Suppose the user chooses πi, i ∈ [1 : K],
independently and uniformly at random from the set of
all permutations of [1 : L], hidden from the servers.
We define the scrambled version of file Wi as Ui =
(ui(1), . . . , ui(L)) = (wi(πi(1)), . . . , wi(πi(L))). Then, we
group these permuted symbols into chunks of c symbols,
i.e., Ui = (vi(1), . . . , vi(

L
c )) where vi(j) =

(
ui((j − 1)c +

1), . . . , ui(jc)
)

for j ∈ [1 : L/c], in which for the sake of
presentation clarity we have assumed that c divides L.

A k-sum of type (j1, . . . , jk) with coefficients vector
(δ1, . . . , δk) of chunks is defined as δ1vj1(i1)+· · ·+δkvjk(ik)
where j1, . . . , jk are distinct elements of [1 : K], i1, . . . , ik ∈
[1 : L/c], δi ∈ F, and all the operations are performed element-
wise in F.

In a general linear PIR scheme, each server transmits K
blocks where the block k ∈ [1 : K] consists of all possible
types of k-sums. This symmetric structure is a consequence

of the privacy requirement [3]. Moreover, each type of k-sums
appears in αN,K(k) distinct instances, by involving different
chunks from the corresponding files in the k-sum. Also, each
distinct instance mentioned above appears βN,K(k) times with
possibly different coefficient vectors. Thus in total, each block
consists of

(
K
k

)
αN,K(k)βN,K(k) chunks which results in the

total load of

p(N,K) , cN,K

K∑
k=1

(
K

k

)
αN,K(k)βN,K(k) (3)

symbols, imposed to each server. Notice that in a general
achievable scheme, the chunk size c depends on N and K,
hence we denote it by cN,K . A linear PIR achievable scheme
is defined to be valid if it satisfies both the decodability and
privacy constraints, defined in Section II.

Now, for the general PIR problem with private side in-
formation, we describe an achievable scheme by employing
MDS codes on top of the PIR scheme without private side
information, similar to the special case proposed in [16]. In
order to do this, assume p(N,K) symbols are transmitted from
each server in the PIR scheme without side information. Then,
if the user is equipped with side information, it is clear that a
subset of these symbols can be constructed directly from the
side information, and thus should not be transmitted. Let us
denote the number of such symbols by q(N,K,M), which
can be calculated as follows

q(N,K,M) , cN,K

M∑
k=1

(
M

k

)
αN,K(k)βN,K(k). (4)

Now, consider an MDS code3 [2p−q, p] over the finite field F
where each server encodes its p symbols with such an MDS
code. Then, instead of sending the original p symbols, each
server only transmits p−q symbols corresponding to the non-
systematic part of such a code. Accordingly, the total number
of symbols, per decoded file, required to be transmitted by all
servers, in the presence of private side information, is

DPSI(N,K,P,M) =
N

PL

[
p(N,K)− q(N,K,M)

]
.

It can be easily verified that the new scheme is valid if the
original scheme is valid. That is because, first, the user can
recover the remaining p− q elements from the coded symbols
and the side information due to the MDS code properties.
Second, the new scheme sends the same set of queries as the
original scheme which satisfy the privacy constraint. Hence,
the total load of new scheme is p− q symbols per server.

The above construction is also used in [16] on top of the
PIR problem studied in [3]. The interesting finding of [16] is
that the load of the PIR problem with private side information
of size M is equal to the load of a PIR problem without private
side information where the library size is reduced by M , i.e.,
K −M .

3In the following, we may remove the dependency of functions p and q on
N , K, and M wherever it is clear from the context.



In this section, we use the general construction introduced
above to develop an achievable scheme for the multi-message
PIR scheme with private side information, based on the
original scheme proposed in [7]. Thus, the main question to
be answered is whether in this case providing the user with
private side information of size M will reduce the effective
library size from K to K −M .

The answer to the above question is a Yes if the following
constraint is satisfied

p(N,K)− q(N,K,M) = p(N,K −M), (5)

where p and q, defined in (3) and (4), are determined by the
achievable scheme through the coefficients αN,K(k), βN,K(k)
and cN,K . Thus, it just remains to check if the corresponding
coefficients used in the achievable scheme proposed for the
multi-message problem without private side information in [7]
satisfy (5) or not. In the rest of this section we answer this
question in the affirmative.

A. Analysis of the Achievable Scheme for P ≥ K−M
2

For this regime, considering the scheme introduced in
[7] and without going into the details, one can verify the
followings

αN,K(k) =

 1 : k = 1,
0 : k = 2, . . . ,K − 1,
N − 1 : k = K,

βN,K(k) =

 1 : k = 1,
0 : k = 2, . . . ,K − 1,
P : k = K,

and cN,K = L
N2 . Then, we have

p(N,K)− q(N,K,M) = cN,K

K∑
k=1

(
K

k

)
αN,K(k)βN,K(k)

− cN,K

M∑
k=1

(
M

k

)
αN,K(k)βN,K(k)

=
L

N2

(
K −M + P (N − 1)

)
.

On the other hand we have

p(N,K −M)

= cN,K−M

K−M∑
k=1

(
K −M

k

)
αN,K−M (k)βN,K−M (k)

=
L

N2

(
K −M + P (N − 1)

)
which confirms (5), and concludes the proof.

B. Analysis of the Achievable Scheme for P ≤ K−M
2

By inspecting the scheme introduced in [7] for the case of
P ≤ K−M

2 , we can verify that

αN,K(k) =

P∑
i=1

γN,K
i rK−P−k

i = rK−P−k
P∑
i=1

γN,K
i ,

where according to [7] we have ri = r and r satisfies (1 +
1
r )

K = NK/P . Here, (γN,K
1 , . . . , γN,K

P ) is the solution of the
linear equation [7, Eq. (64)]. Notice that we do not need the
exact values of γN,K

i ’s since they will cancel out later from
our computations. Moreover, we have βN,K(k) = 1 in this
regime.

The constant cN,K of the scheme in [7] can be derived
as follows. Each k-sum transmitted by each server can be
one of the two following types. The first type includes those
sums containing at least some chunks from the requested files
and maybe some chunks from the not-requested files. The
second type only consists of sums containing not-requested
file chunks, which are being transmitted due to the privacy
requirements. For the decodability constraint we require that
the total number of useful equations (equations containing at
least one chunk from the P requested files) transmitted by all
the servers should be equal to the total number of symbols
required to recover the P requested files (i.e., PL symbols).
This will result in

cN,K =
1

N

PL∑K
k=1

(
K
k

)
αN,K(k)−

∑K−P
k=1

(
K−P

k

)
αN,K(k)

.

Hence, to verify (5) we can proceed as follows

p(N,K)− q(N,K,M)

=
PL

N

∑K
k=1

(
K
k

)
αN,K(k)−

∑M
k=1

(
M
k

)
αN,K(k)∑K

k=1

(
K
k

)
αN,K(k)−

∑K−P
k=1

(
K−P

k

)
αN,K(k)

=
PL

N

∑K
k=1

(
K
k

)
rK−P−k −

∑M
k=1

(
M
k

)
rK−P−k∑K

k=1

(
K
k

)
rK−P−k −

∑K−P
k=1

(
K−P

k

)
rK−P−k

=
PL

N

∑K
k=1

(
K
k

)
r−k −

∑M
k=1

(
M
k

)
r−k∑K

k=1

(
K
k

)
r−k −

∑K−P
k=1

(
K−P

k

)
r−k

=
PL

N

(1 + r−1)K − (1 + r−1)M

(1 + r−1)K − (1 + r−1)K−P

=
PL

N

NK/P −NM/P

NK/P −N (K−P )/P

=
PL

N

1−
(

1
N

)K−M
P

1− 1
N

=
PL

N
·DPSI(N,K −M,P, 0).

which is equal to p(N,K − M) according to [7]. This
concludes the proof.

V. THE CONVERSE PROOF

A. The Converse Argument for P ≥ K−M
2

To prove the converse for this case, let us proceed as fol-
lows. Without loss of generality we assume S = {1, . . . ,M},
P = {M+1, . . . ,M+P+1}. Then, we can state the following
lemma.

Lemma 1. Under the assumptions of Theorem 1, we have

(K −M)L ≤
N∑

n=1

H(AS,P
n |Q,WS) + (K −M − P )L



−H(A1|Q,WS ,WP). (6)

Proof. The proof is provided in [17].

Now, we can lower bound DPSI as follows

DPSI =
1

PL

N∑
n=1

H(AS,P
n )

≥ 1

PL

N∑
n=1

H(AS,P
n |Q,WS)

(a)
≥ 1

PL

(
PL+H(A1|Q,WS ,WP)

)
(b)
≥ 1 +

K −M − P

NP
where (a) follows from Lemma 1 and (b) holds due the
following lemma, Lemma 2. This concludes the proof.

Lemma 2. If P ≥ K−M
2 , then we have

H(A1|Q,WS ,WP) ≥
(K −M − P )L

N
.

Proof. The proof is provided in [17].

B. The Converse Argument for P ≤ K−M
2

To prove the converse for this regime, we can state the
following lemma.

Lemma 3. Under the assumption of Theorem 1, we have

(K −M)L ≤ NH(A1|Q,WS)

+ (N − 1)[NH(A1|Q,WS)− PL]

+ (K −M − 2P )L

−H(A1|W[M+1:M+2P ], Q,WS).

Proof. The proof is provided in [17].

The result stated in Lemma 3 can be equivalently written
as

NH(A1|Q,WS) ≥
(
1 +

1

N

)
PL

+
1

N
H(A1|W[M+1:M+2P ], Q,WS). (7)

Equation (7) provides a lower bound on H(A1|Q,WS).
Applying the same chain of inequalities used to prove
Lemma 3, one can derive a similar inequality for
H(A1|W[M+1:M+2P ], Q,WS). Hence, by applying (7) induc-
tively over the library size, one can derive a lower bound for
H(A1|Q,WS), similar to [7, Equation (125)]. The important
difference of above calculations with those appeared in [7]
is that here we start the induction from the message WM+1

while the starting point of [7] is the message W1.
Similar to the path followed from [7, Equation (124)] to [7,

Equation (133)], we arrive at

DPSI ≥

1−
(

1
N

)⌊K−M
P ⌋

1− 1
N

+

(
K−M

P −
⌊
K−M

P

⌋)
N⌊K−M

P ⌋


which completes the proof for the case of P ≤ K−M

2 and
K−M

P ∈ N.

VI. CONCLUSIONS

In this paper, we have characterized the capacity of a multi-
message PIR problem where the user has access to a private
side information, for certain regimes. Our result shows that
the role of private side information is equivalent to reducing
the effective library size by the size of side information. This
result, along with a similar conclusion for a single-message
PIR setup in [16], motivate the conjecture that for any PIR
scheme, adding a private side information will be equivalent
to reducing the effective library size.
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