
Bottleneck Discovery and Overlay Management
in Network Coded Peer-to-Peer Systems

Mahdi Jafarisiavoshani
EPFL

Switzerland
mahdi.jafari@epfl.ch

Christina Fragouli
∗

EPFL
Switzerland

christina.fragouli@epfl.ch

Suhas Diggavi
EPFL

Switzerland
suhas.diggavi@epfl.ch

Christos Gkantsidis
Microsoft Research

United Kingdom
chrisgk@microsoft.com

ABSTRACT
The performance of peer-to-peer (P2P) networks depends critically
on the good connectivity of the overlay topology. In this paper we
study P2P networks for content distribution (such as Avalanche)
that use randomized network coding techniques. The basic idea of
such systems is that peers randomly combine and exchange linear
combinations of the source packets. A header appended to each
packet specifies the linear combination that the packet carries. In
this paper we show that the linear combinations a node receives
from its neighbors reveal structural information about thenetwork.
We propose algorithms to utilize this observation for topology man-
agement to avoid bottlenecks and clustering in network-coded P2P
systems. Our approach is decentralized, inherently adaptsto the
network topology, and reduces substantially the number of topol-
ogy rewirings that are necessary to maintain a well connected over-
lay; moreover, it is integrated in the normal content distribution.
This work demonstrates another advantage of using network cod-
ing and complements previous work that showed network coding
achieves high network-resource utilization.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms, Management, Measurement

Keywords
Peer-to-Peer Networks, Network Coding, Topology Management,
Network Algorithms

∗This work was in part supported by the Swiss National Science
Foundation under award No PP002–110483.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
INM’07, August 27–31, 2007, Kyoto, Japan.
Copyright 2007 ACM 978-1-59593-788-9/07/0008 ...$5.00.

1. INTRODUCTION
Peer-to-peer (P2P) networks have proved a very successful dis-

tributed architecture for content distribution. The design philoso-
phy of such systems is to delegate the distribution task to the par-
ticipating nodes (peers) themselves, rather than concentrating it to
a low number of servers with limited resources. Therefore, such a
P2P non-hierarchical approach is inherently scalable, since it ex-
ploits the computing power and bandwidth of all the participants.

Having addressed the problem of ensuring sufficient networkre-
sources, P2P systems still face the challenge of how to efficiently
utilize these resources while maintaining a decentralizedoperation.
Central to this is the challenging management problem of connect-
ing the peers in a way that ensures the fastest possible information
dissemination. The goal is to create a network topology thateffi-
ciently uses the available bandwidth with minimal or no centralized
coordination, in a manner scalable to the network size.

The main P2P network solutions (e.g., Gnutella, Freenet, Nap-
ster, BitTorrent) effectively build complex topologies, such as rings,
or meshes of multicast trees.These approaches have the disadvan-
tage of imposing topological constraints on the bandwidth usage,
e.g., embedding trees in the existing network structure. Such a
problem is hard to solve optimally even with perfect centralized
control.

An alternate design philosophy is embodied by network coded
P2P systems such as Avalanche [2, 3]: it employs randomized net-
work coding, where peers randomly combine their received pack-
ets and propagate such linear combinations to their neighbors. A
peer receiving a sufficient number of linear combinations solves a
system of linear equations and retrieves the source packets. Thus
peers no longer collect packets routed through pre-specified paths
from the source, but instead attempt to collect and propagate “de-
grees of freedom” (linear combinations). This approach dispenses
with the need of creating and preserving specific routing struc-
tures. In fact it can be shown that the optimal routing problem
becomes polynomial-time. Moreover, there is potential forsignif-
icant gains in network throughput making network coding a very
promising paradigm for P2P systems as has been demonstratedin
the Avalanche system. However, to optimize the use of these re-
sources, we still need to build a network topology that allows the
fastest possible dissemination of information in a scalable manner.

In both systems, the task of topology management is hindered
by the fact that the peers need to form overlay-network connec-
tions using underlying physical links whose available bandwidth is
hard to estimate. In this paper, we will argue that for P2P networks

employing randomized network coding, we can use the structure of
the exchanged packets to passively infer physical-link bottlenecks.
In particular, the packets a node observes from its neighbors con-
tain implicit information about the underlying physical-link band-
widths. The specific application of this observation is to use such
information to break clusters, using the minimum required num-
ber of topology rewirings. Topology rewirings could be costly in
P2P networks, since each rewiring of the topology may need tobe
accompanied by an authentication and set-up of a security proto-
col (as done in Avalanche). This could incur significant delay and
hence motivating methods that seek to reduce the rewirings with-
out affecting dissemination rates. We propose algorithms that (i)
identify and re-connect only nodes whose re-wiring leads tobreak-
ing of clusters,(ii) use a variable number of reconnections, adapting
(without centralized knowledge) to the requirements of thenetwork
topology, and(iii) are peer-initiated and scalable.

In Section 2, we briefly discuss Avalanche, illustrate our ap-
proach with a simple example, and put our work in context.We then
develop a theoretical framework in Section 3, propose algorithms
in Section 4 and present simulation results in Section 5. Section 6
concludes the paper.

2. DESCRIPTION AND MOTIVATION
We start by first briefly reviewing randomized network coding,

and describing how Avalanche builds the overlay topology em-
ployed for content distribution. We then motivate our work through
an example, and discuss related work.

2.1 Randomized Network Coding
Consider a source withn packets to be distributed to a set of

nodes. In randomized network coding [4], each packet is assumed
to consist ofL symbols over a finite fieldFq. This simply means
that, forq = 2m, a packet of lengthmL bits is considered to con-
tainL symbols overF2m , where sets of ofm bits are treated as one
symbol overF2m . Nodes in the network perform operations over
Fq. The source sends “coded packets”, each packet consisting of a
uniform at random chosen linear combination of then packets over
Fq. Each packet has an appendedcoding vectorof sizen symbols
overFq, that specifies which linear combination each coded packet
carries. Note that for largeL (mL bit packets), the overhead of
n symbols (nm bits) can be made very small. Intermediate nodes
in the network recursively and uniformly at random combine their
collected packets and create new coded packets that they propagate
through the network. Note that the coding vectors a node can cre-
ate have to belong in the span1 of the coding vectors it has already
collected. Once a node has collected a set of coding vectors that
spans then-dimensional space, it has enough information to solve
a system of linear equations and retrieve the source packets.

2.2 Avalanche Topology Management
In a nutshell, Avalanche relies on periodically renewed random

selections for the peer neighbors to rewire the employed overlay
network [2,3]. In more detail, the source forms the first nodeof the
overlay network that will be used for the file distribution. All nodes
in this network are connected to a small number of neighbors (four
to eight). Neighbors for each arriving node are chosen uniformly
at random among already participating nodes, which accept the so-
licited connection unless they have already reached their maximum
number of neighbors. Each node keeps local topological informa-
tion, namely, the identity of the neighbors it is directly connected
1The vectorsv1, . . . , vn span ann-dimensional space if they form
a basis of this space. Their span, is the set of vectors that are all
linear combinations of them.

(a)
S

A

B

C

D

(b)

S

A

B

C

D

Figure 1: The sourceS distributes packets to the peersA, B,
C and D over the overlay network (a), that uses the underlying
physical network (b).

to. A special node called registrat keeps track of the list ofactive
peers. Nodes periodically drop one neighbor and reconnect to a
new one, asking the registrat to randomly select the new neighbor
from the active peers list.

The randomized rewiring Avalanche employs results in a fixed
average number of reconnections per node independently of how
good or bad is the formed network topology. Thus to achieve a
good, on the average, performance in terms of breaking clusters, it
entails a much larger number of rewiring and requests to the regis-
trat than required, and unnecessary topology changes.

Clearly the registrat, since it allocates to each peer its neighbors,
could keep some structural information,i.e., keep track of the cur-
rent network topology, and use it to make more educated choices
of neighbor allocations. However, the information the registrat can
collect only reflects theoverlaynetwork topology, and is oblivious
to bandwidth constraints from the underlying physical links. Ac-
quiring bandwidth information for the underlying physicallinks at
the registrat requires costly estimation techniques over large and
heterogeneous networks, and steers towards a centralized network
operation. We argue that such bottlenecks can be inferred passively,
thus avoiding these drawbacks.

2.3 Our Approach
Our work starts from the observation that the coding vectorsthe

peers receive from their neighbors can be used to passively infer
bottleneck information. This allows individual nodes to initiate
topology changes to correct problematic connections. In particu-
lar, peers by keeping track of the coding vectors they receive can
detect problems in both the overlay topology and the underlying
physical links. The following example illustrates these points.

Consider the toy network depicted in Fig. 1(a) where the edges
correspond to logical (overlay network) links. The sourceS hasn
packets to distribute to four peers. NodesA, B andC are directly
connected to the sourceS, and also among themselves with logical
links, while nodeD is connected to nodesA, B andC. In this
overlay network, each node has constant degree three (threeneigh-
bors), and there exist three edge-disjoint paths between any pair of
nodes (in particular, between the source and any other node).

Assume now (as shown in Fig. 1(b)) that the logical linksSA,
SB, SC share the bandwidth of the same underlying physical link,
which forms a bottleneck between the source and the remaining
nodes of the network. As a result, assume the bandwidth on each
of these links is only1/3 of the bandwidth of the remaining links.
The registrat, even if it keeps track of the complete logicalnetwork
structure, is oblivious to the existence of the bottleneck and the
asymmetry between the link bandwidths.

Node D however, can infer this information by observing the
coding vectors it receives from its neighborsA, B andC. Indeed,
when nodeA receives a coded packet from the source, it will for-
ward a linear combination of the packets it has already collected to
nodesB andC andD. Now each of the nodesB andC, once they
receive the packet from nodeA, they also attempt to send a coded
packet to nodeD. But these packets will not bring new information
to nodeD, because they will belong in the linear span of coding
vectors that nodeD has already received. Similarly, when nodesB
andC receive a new packet from the source, nodeD will end up
being offered three coded packets, one from each of its neighbors,
and only one of the three will bring to nodeD new information.

More formally, the coding vectors nodesA, B andC will collect
will effectively span the same subspace; thus the coded packets
they will offer to nodeD to download will belong in significantly
overlapping subspaces and will thus be redundant (we formalize
these intuitive arguments in Section 3). NodeD can infer from this
passively collected information that there is a bottleneckbetween
nodesA, B, C and the source, and can thus initiate a connection
change.

2.4 Related Work
Overlay topology monitoring and management that do not em-

ploy network coding has been an intensively studied research topic,
see for example [5]. Our proposed approach applies specifically to
systems employing network coding.

We have initiated work on taking advantage of the network cod-
ing capabilities for active network monitoring in [6, 7] where the
focus was on link loss rate inference. Passive inference of link loss
rates has also been proposed in [8]. However, the idea of passive
inference of topological properties is a novel contribution of this
paper.

3. THEORETICAL FRAMEWORK
We start by formally introducing some notation. We assume that

the source hasn packets, each with independent information, to
distribute to a set of nodes. We can think of each packet as corre-
sponding to one dimension of ann-dimensional space, over a finite
field Fq. We thus associate with each packet one of the orthonor-
mal basis vectors{e1, . . . , en}, whereei is then-dimensional vec-
tor with one at positioni and zero elsewhere. Each packet has an
associatedn-dimensional coding vector attached to it.

We say that nodej at timet observes a subspaceΠj , whereΠj is
the vector space spanned by the coding vectors nodej has received
up to timet. Initially at timet = 0, Πj is empty. If nodej receives
k linearly independent coding vectors, then

dim(Πj) = k.

A coded packet bringsinnovative informationif the associated cod-
ing vector does not belong inΠj (it increases thedim(Πj) by
one). Whendim(Πj) = n, nodej has collected a basis of the
n-dimensional space and can decode the source information. To
compare subspaces, we will denote

1. the dimension of each subspace as

di = dim(Πi), ∀ i,

2. the dimension of the intersection of two subspaces as

dij = dim(Πi ∩ Πj), ∀ i, j,

3. the distance between two subspaces as

Dij = dim(Πi ∪ Πj) − dim(Πi ∩ Πj), ∀ i, j.

As also observed in [9], the distanceDij defines a metric space
and can be used to compare how “different” the subspaces are.In
some occasions we will also need a measure that compares how the
subspaces of one cluster of nodesA differ from the subspaces of
another cluster of nodesB. For this we will use the average pair-
wise distance

DAB =
1

|A||B|

X

i∈A,j∈B

Dij . (1)

Note that the computation of distancesdi, dij , Dij andDAB can
be reduced to calculating ranks of certain associated matrices. This
can be done efficiently over finite fields using lattice reduction al-
gorithms [11].

For simplicity we will assume that the network is synchronous.
By this we mean that nodes transmit and receive according to a
global clock tick2. Nodes are allowed to transmit linear combina-
tions of their received packets only at clock ticks, at a rateequal to
the adjacent link bandwidth. We normalize the transmitted rates so
that themaximumrate a node can transmit is1 packet per timeslot
in eachof its outgoing edges. A node transmitting information at a
rate 1

k
on an outgoing link, sends one coded packet everyk clock

ticks.
We will explore in this paper the topological information re-

vealed by the coding vectors at each node. We distinguish two
cases, depending on what information we are allowed to use.

• Local Information: at a given timet, each nodej knows
its own subspace, and the subspaces it has received from its
parent nodes. This is the case we will examine in this paper.

• Global Information: at a given timet, we know the sub-
spaces that all nodes in the network have observed. This is
the maximum information we can hope to get from the cod-
ing vectors propagated through the network, and is studied
in a companion paper [10]. Here we would like to briefly
mention that, for a directed network where information only
flows from parent to child nodes, and under some mild con-
ditions, knowledge of the subspaces of all nodes in the net-
work, allows to uniquely determine how the network nodes
are connected. This is a surprising result, indicating thatthe
topological information carried from the subspaces is in fact
quite significant.

In the following, we will also use the notion of min-cut values.
Let A andB denote two disjoint sets of vertices of the graph. A
cut value is defined as the sum of the capacities of a set of edges
we need to remove to disconnect setsA andB. The min-cut is
the minimum cut value. The celebrated min-cut max-flow theorem
states that if the min-cut value between two nodes equalsc, then
the maximum information rate we can convey from one to another
also equalsc.

3.1 Local Information
LetΠi = Π̂1∪ . . .∪Π̂c denote the subspace spanned by the cod-

ing vectors a nodei has collected at a fixed time instance, where
Π̂1, . . . , Π̂c denote the subspaces that it has received from itsc
neighborsu1, . . . , uc. We are interested in understanding what in-
formation we can infer from these received subspacesΠ̂1, . . . , Π̂c.
For example, the overlap of subspaces from the neighbors reveals
something about a bottleneck. Therefore, we need to show that
such overlaps occur due to topological properties and not due to
particular random linear combinations chosen by the network code.
2This is not essential for the algorithms but simplify the theoretical
analysis.

The following lemmas present some properties that the subspaces
observed by the network nodes and the rates at which their size
increases, need obey.

LEMMA 1. Let Πk be ak-dimensional subspace of the vector
spaceF

n
q , i.e., dk = k. Construct the subspaceΠm by selecting

m ≤ n vectors{w1, . . . , wm} uniformly at random fromF
n
q . Un-

der the assumption thatq � 1 it holds3 that

Pr[dm = m] ≈ 1, and

Pr[dkm = d] ≈


1 if d = (m − (n − k))+,
0 otherwise.

Proof. Let Π⊥
k be the subspace with the propertyΠk ∪ Π⊥

k =
F

n
q , andU = {u1, . . . , uk} andV = {v1, . . . , vn−k} be sets of

basis vectors forΠk andΠ⊥
k respectively. We can then expand the

vectors{w1, . . . , wm} as

wi =
kX

j=1

α
(i)
j uj +

nX

j=k+1

α
(i)
j vj−k, i = 1, . . . , m.

Let A be then × m matrix with columns the vectorsα(j), and
denote byeUk×m, eV(n−k)×m the sub matrices ofA collecting the
coefficients with the respect toU andV :

A =

2
4

| |

α(1) · · · α(m)

| |

3
5 =

2
6666664

eUk×m

eV(n−k)×m

3
7777775

.

For q � 1, the matrixA is full rank with probability approaching
one, and thusPr[dm = m] ≈ 1 (see also [4]). To calculatedkm =
dim(Πk ∩ Πm), note that the vectorsa that belong inΠk ∩ Πm

satisfy the equation

2
66664

eUk×m

eV(n−k)×m

3
77775
·

2
64

a1

...
am

3
75 =

2
666664

b1

...
bk

0(n−k)×1

3
777775

,

and thus belong in the kernel (null space) of the matrixeV(n−k)×m.
For q >> 1 this matrix is full rank with high probability. As a
result,

dim(Kernel(eV(n−k)×m)) = m − Rank(eV(n−k)×m)

≈ m − min(m, n − k)

= (m − (n − k))+ . �

LEMMA 2. LetΠi andΠj be two subspaces ofF
n
q with dimen-

sion di and dj respectively, and intersectionΠij = Πi ∩ Πj of
sizedij . ConstructΠ̂i andΠ̂j by choosingmi ≤ di andmj ≤ dj

vectors uniformly at random fromΠi andΠj respectively. Then the
size of their intersection̂dij = dim(Π̂i ∩ Π̂j) satisfies

Pr[d̂ij = d] ≈


1 d = (mi + mj − (di + dj − dij))

+,
0 otherwise,

Proof. The proof follows by applying the previous lemma twice,
once onΠ̂i and once on̂Πj . We denoteΠ = Π̂i ∩ Πij .

3The≈ notation means that this is true with probability1 asq →
∞.

1. From Lemma 1,̂Πi has dimensionmi w.h.p., and its intersection
with Πij has dimensiond = (mi−(di−dij))

+. 2. From Lemma 1,
Π̂j has dimensionmj w.h.p., and its intersection with the subspace
Π has dimension

d̂ij = (mj − (dj − d))+ = (mi + mj − (di + dj − dij))
+. �

Lemma 3 can be proved following a very similar approach to the
main theorem in network coding [1].

LEMMA 3. In a synchronous network where the min-cut to a
nodei is c, after a transition phase of the network, nodei receives
c innovative packets per time slot from its neighbors.

Assume for example that the subspacesΠ̂1, . . . , Π̂c a nodei re-
ceives from its set of neighbors{ui} have an intersection of di-
mensiond. This implies that,(i) from Lemma 3, the min-cut be-
tween the nodes{ui} and the source is smaller than the min-cut
between the nodei and {ui}, and (ii), from Lemma 2, the sub-
spacesΠ1, . . . , Πc of the neighbors have an intersection of size at
leastd. Next we will discuss algorithms that use such observations
for decentralized topology management.

4. ALGORITHMS
Our peer-initiated algorithms for topology management consist

of three tasks:

1. Each peer decides whether it is satisfied with its connection
or not, using adecision criterion.

2. An unsatisfied peer sends arewiring request, that can contain
different levels of information, either directly to the registrat,
or to its neighbors (these are the only nodes the peer can
communicate with).

3. Finally, the registrat, having received rewiring requests,allo-
cates neighborsto nodes to be reconnected.

The decision criterion can capitalize on the fact that overlap-
ping received subspaces indicate an opportunity for improvement.
For example, a node can decide it is not satisfied with a particu-
lar neighbor, if it receivesk > 0, non-innovative coding vectors
from it, wherek is a parameter to be decided. The first algorithm
we propose (Algorithm 1) uses this decision criterion; it then has
each unsatisfied node directly contact the registrat and specify the
neighbor it would like to change. The registrat randomly selects a
new neighbor. This algorithm, as we demonstrate through simula-
tion results, may lead to more rewirings than necessary: indeed, all
nodes inside a cluster may attempt to change their neighbors, while
it would have been sufficient for a fraction of them to do so.

Our second algorithm (Algorithm 2) uses a different decision
criterion: for every two neighborsi andj, each peer computes the
rate at which the received joint spacêΠi ∪ Π̂j and intersection
spaceΠ̂i ∩ Π̂j increases. If the ratio between these two rates be-
comes greater than a thresholdT , the node decides it would like
to change one of the two neighbors. However, instead of directly
contacting the registrat, it uses a decentralized voting method that
attempts to further reduce the number of re-connections. A node
unsatisfied with a particular neighbor sends a request to this neigh-
bor indicating so. Every node collects all such requests it receives,
and only after it collects a certain number∆ of them, it sends a
request to the registrat requesting to be rewired. The registrat then
randomly selects and allocates one new neighbor.

Our last proposed algorithm (Algorithm 3), while still peer-
initiated and decentralized, relies more than the two previous ones
in the computational capabilities of the registrat, and is specifically

targeted to breaking topological clusters. The basic observation
is that, nodes in the same cluster will not only receive overlap-
ping subspaces from their parents, but moreover, they will end up
collecting subspaces with very small distance (this follows from
Lemmas 1-3 and is also illustrated through simulation results in
Section 5). Each unsatisfied peeri sends a rewiring request to the
registrat, indicating to the registrat the subspaceΠi it has collected.
A peer can decide it is not satisfied using for example the samecri-
terion as in Algorithm 2.

The registrat waits for a short time period, to collect requests
from a number of dissatisfied nodes. These are the nodes of the
network that have detected they are inside clusters. It thencalcu-
lates the distance between the identified subspaces to decide which
peers belong in the same cluster. While exact such calculations can
be computationally demanding, in practice, the registrat can use
one of the many hashing algorithms to efficiently do so. Finally the
registrat breaks the clusters by rewiring a small number of nodes
in each cluster. The allocated new neighbors are either nodes that
belong in different clusters, or, nodes that have not send a rewiring
request at all.

We will compare our algorithms against theRandom Rewiring
currently employed by Avalanche. In this algorithm, each time a
peer receives a packet, with probabilityp contacts the registrat and
asks to change a neighbor. The registrat randomly selects which
neighbor to change, and randomly allocates a new neighbor from
the active peer nodes.

5. SIMULATION RESULTS
For our simulation results we will start from the topology illus-

trated in Fig. 2, that consists of30 nodes connected into three dis-
tinct clusters. The source is node1, and belongs in the first cluster.
The bottleneck links are indicated with arrows (and thus indicate
the underlying physical link structure). Our first set of simulation
results depicted in Fig. 4 and 3 show that the subspaces within each
cluster are very similar, while the subspaces across clusters are sig-
nificantly different, where we use the distance measure in (1). Note
that, the smaller the bottleneck, the larger the “similarity” of sub-
spaces within the same cluster, and also, the larger the difference
across clusters. These results indicate for example that knowledge
of these subspaces will allow the registrat to accurately detect and
break clusters (Algorithm 3).

Our second set of simulation results considers again a topology
with three clusters: cluster1 has15 nodes and contains the source,
cluster2 has also15 nodes, while the number of nodes in cluster3
increases from15 to 250. During the simulations we assume that
the registrat keep the nodes’ degree between2 and5, with an av-
erage degree of3.5. All edges correspond to unit capacity links.
An experiment terminates once all peers have collected all packets.
The values presented are averaged over10 experiments, where in
each experiment the source sends50 packets to the peers.

We compare the performance of the three proposed algorithmsin
Section 4 with random rewiring, currently employed by Avalanche.
We implemented these algorithms as follows. For random rewiring,
every time a node receives a packet it changes one of its neighbors
with probabilityp = 8

500
. For Algorithm 1, we use a parameter of

k = 10, and check whether the non-innovative packets received ex-
ceed this value every four received packets. For Algorithm 2, every
node checks each received subspaces every four received packets
using the threshold valueT = 1. Nodes that receive∆ = 2 or
more rewiring requests contact the registrat. Finally for Algorithm
3, we assume that nodes use the same criterion as in Algorithm 2to
decide whether they form part of a cluster, again withT = 1. Dis-
satisfied node send their observed subspaces to the registrat. The

registrat assigns nodesi andj in the same cluster ifDij ≤ 7, where
Dij is defined in Section 3.

Table 1 compares all algorithms with respect to the average col-
lection time, defined as the difference between the time a peer re-
ceives the first packet and the time it can decode all packets,and
averaged over all peers. All algorithms perform similarly,indicat-
ing that all algorithms result in breaking the clusters. It is important
to note that these average collection times is in terms of number of
exchanges needed anddoes notaccount for the delays incurred due
to rewiring. We compare the number of such rewirings needed next.

Fig. 5 plots the average number of rewirings each algorithm em-
ploys. Random rewiring incurs a number of rewirings proportional
to the number of P2P nodes, and independently from the underly-
ing network topology. Our proposed algorithms on the other hand,
adapt to the existence and size of clusters. Algorithm3 leads to the
smallest number of rewirings. Algorithm2 leads to a larger number
of rewirings, partly due to that the new neighbors are chosenran-
domly and not in a manner that necessarily breaks the clusters. The
behavior of algorithm1 is interesting. This algorithm rewires any
node that has received more thank non-innovative packets. Con-
sider cluster3, whose size we increase for the simulations. Ifk is
small with respect to the cluster size, then a large number ofnodes
will collect close tok non-innovative packets; thus a large number
of nodes will ask for rewirings. Moreover, even after rewirings that
break the cluster occur, some nodes will still collect linearly de-
pendent information and ask for additional rewirings. As cluster3
increases in size, the information disseminates more slowly within
the cluster. Nodes in the border, close to the bottleneck links, will
now be the ones to first ask for rewirings, long before other nodes
in the network collect a large number of non-innovative packets.
Thus once the clusters are broken, no new rewirings will be re-
quested. This desirable behavior of Algorithm1 manifests itself
for large clusters; for small clusters, such as cluster2, the second
algorithm for example achieves a better performance using less re-
connections.

50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200

Total number of P2P nodes

A
ve

ra
ge

 n
um

be
r

of
 r

ew
iri

ng
s

Random

Algo1

Algo2

Algo3

Figure 5: Average number of rewirings, for a topology with
three clusters: cluster1 has 15 nodes, cluster2 has15 nodes,
while the number of nodes in cluster3 increases from20 to 250
as described in Table1.

6. CONCLUSIONS

1

23

4

5

6

7
8

9
10

11

12

13

14

15

16

17

18 19

20

2122

23 24

25

26
27

28

29

30

Topolog of a network with 3 clusters.

Figure 2: Topology with three clusters: cluster1 contains nodes
1–10, cluster 2 nodes11–20 and cluster3 nodes21–30.

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

Time (Round)

A
ve

ra
ge

 D
is

ta
nc

e

Average distance between clusters, links that connect clusters have capacity 0.1

Dst(1,1)
Dst(1,2)
Dst(1,3)
Dst(2,2)
Dst(2,3)
Dst(3,3)

(1,2)

(1,3)

(1,1)

(2,3)

(2,2) (3,3)

Figure 3: Simulation results for the topology in Fig. 2, with bot-
tleneck link capacity values equal to0.1.

0 5 10 15 20 25 30 35 40
0

5

10

15

Time (Round)

A
ve

ra
ge

 D
is

ta
nc

e

Average distance between clusters, links that connect clusters have capacity 05

Dst(1,1)
Dst(1,2)
Dst(1,3)
Dst(2,2)
Dst(2,3)
Dst(3,3)

(2,3)

(2,2)

(1,3)

(1,2)

(1,1)

(3,3)

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

Time (Round)

A
ve

ra
ge

 D
is

ta
nc

e

Average distance between clusters, links that connect clusters have capacity 1

Dst(1,1)
Dst(1,2)
Dst(1,3)
Dst(2,2)
Dst(2,3)
Dst(3,3)

(2,3)

(2,2)

(1,2)

(3,3)

(1,1)

(1,3)

Figure 4: Additional results for the topology in Fig. 2, with bottleneck link capacity values equal to0.5 (left) and 1 (right).

Table 1: Average Collection Time
Topology Random Algo 1 Algo 2 Algo 3
15–15–20 20.98 22.14 20.57 20.39
15–15–40 18.72 21.13 19.36 19.47
15–15–70 18.88 21.54 18.97 19.54
15–15–100 18.6 21.48 18.91 21.42
15–15–150 19.56 20.85 19.96 20.18
15–15–250 18.79 19.8 19.18 18.99

In this paper we observed that, in a P2P network utilizing net-
work coding the linear combinations a peer receives from itsneigh-
bors unravel structural information about the network topology. We
propose methods to capitalize on this fact for passive inference of
network characteristics, and peer-initiated overlay topology man-
agement. This is a first paper introducing these ideas, and there are
a number of associated questions and research directions that still
need to be explored such as, combining with proposed techniques
for distributed management of systems that do not employ network
coding, and security concerns.

Acknowledgments: We thank A. Markopoulou, S. Mohajer and
P. Rodriguez for many useful discussions.

7. REFERENCES

[1] R. Ahlswede, N. Cai, S-Y. R. Li, and R. W. Yeung, “Network
information flow”, IEEE Trans. Inform. Theory,vol. 46,
pp. 1204–1216, July 2000.

[2] C. Gkantsidis and P. Rodriguez, “Network coding for large scale
content distribution”,Infocom, March 2005.

[3] C. Gkantsidis, J. Miller, P. Rodriguez, “Comprehensiveview of a live
network coding P2P system”,ACM SIGCOMM/USENIX IMC, 2006.

[4] T. Ho, R. Koetter, M. Médard, M. Effros, J. Shi, and D. Karger, “A
random linear network coding approach to multicast”,IEEE
Transactions on Information Theory, pp. 4413-4430, Oct. 2006.

[5] “RON: Resilient Overlay Networks”http://nms.csail.mit.edu/ron
[6] C. Fragouli and A. Markopoulou, “A network coding approach to

overlay network monitoring”,Allerton, Oct. 2005.
[7] C. Fragouli, A. Markopoulou, and S. Diggavi, “Active topology

inference using network coding”,Allerton, Oct. 2006.
[8] T. Ho, B. Leong, Y. Chang, Y. Wen and R. Koetter, “Network

monitoring in multicast networks using network coding”,in
International Symposium on Information Theory (ISIT), June 2005.

[9] R. Koetter and F. Kschischang, “Coding for errors and erasures in
random network coding”,in International Symposium on Information
Theory (ISIT), June 2007.

[10] M. Jafarisiavoshani, C. Fragouli and S. Diggavi, “Subspace
properties of randomized network coding”,Information Theory
Workshop, July 2007.

[11] H. Coehn,A course in computational algebraic number theory,
Springer, 1993.

