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ABSTRACT

The performance of peer-to-peer (P2P) networks depentitsadisi

on the good connectivity of the overlay topology. In this pawe
study P2P networks for content distribution (such as Awtiah
that use randomized network coding techniques. The basicaofl
such systems is that peers randomly combine and excharege lin
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1. INTRODUCTION

Peer-to-peer (P2P) networks have proved a very successful d
tributed architecture for content distribution. The desphiloso-
phy of such systems is to delegate the distribution taskeq#r-
ticipating nodes (peers) themselves, rather than coratergrit to
a low number of servers with limited resources. Therefanehsa

combinations of the source packets. A header appended ko eac P2P non-hierarchical approach is inherently scalableesinex-

packet specifies the linear combination that the packetesartn
this paper we show that the linear combinations a node reseiv
from its neighbors reveal structural information aboutrleévork.
We propose algorithms to utilize this observation for togyl man-
agement to avoid bottlenecks and clustering in networledde2P
systems. Our approach is decentralized, inherently adaptse
network topology, and reduces substantially the numbeomdlt
ogy rewirings that are necessary to maintain a well condemter-
lay; moreover, it is integrated in the normal content disttion.
This work demonstrates another advantage of using netwaitk ¢
ing and complements previous work that showed network gpdin
achieves high network-resource utilization.
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ploits the computing power and bandwidth of all the paraaits.

Having addressed the problem of ensuring sufficient netwerk
sources, P2P systems still face the challenge of how to exitigi
utilize these resources while maintaining a decentraligetation.
Central to this is the challenging management problem ofiech
ing the peers in a way that ensures the fastest possiblariafan
dissemination. The goal is to create a network topology eiffat
ciently uses the available bandwidth with minimal or no calized
coordination, in a manner scalable to the network size.

The main P2P network solutions.{, Gnutella, Freenet, Nap-
ster, BitTorrent) effectively build complex topologiesich as rings,
or meshes of multicast trees.These approaches have thivalisa
tage of imposing topological constraints on the bandwidtage,
e.g, embedding trees in the existing network structure. Such a
problem is hard to solve optimally even with perfect celead
control.

An alternate design philosophy is embodied by network coded
P2P systems such as Avalanche [2, 3]: it employs randomieed n
work coding, where peers randomly combine their receivedkpa
ets and propagate such linear combinations to their nerghb®
peer receiving a sufficient number of linear combinatiorisesoa
system of linear equations and retrieves the source packéiss
peers no longer collect packets routed through pre-spegfi¢hs
from the source, but instead attempt to collect and progaitgh-
grees of freedom” (linear combinations). This approachefises
with the need of creating and preserving specific routingcstr
tures. In fact it can be shown that the optimal routing proble
becomes polynomial-time. Moreover, there is potentialsignif-
icant gains in network throughput making network coding gyve
promising paradigm for P2P systems as has been demonsinated
the Avalanche system. However, to optimize the use of these r
sources, we still need to build a network topology that adidte
fastest possible dissemination of information in a scalalhnner.

In both systems, the task of topology management is hindered
by the fact that the peers need to form overlay-network conne
tions using underlying physical links whose available lveidth is
hard to estimate. In this paper, we will argue that for P2vaeks



employing randomized network coding, we can use the streictu
the exchanged packets to passively infer physical-linkidroécks.
In particular, the packets a node observes from its neighbon-
tain implicit information about the underlying physicai band-
widths. The specific application of this observation is te sach
information to break clusters, using the minimum requiredn
ber of topology rewirings. Topology rewirings could be d¢psh
P2P networks, since each rewiring of the topology may nede to
accompanied by an authentication and set-up of a secuitg-pr
col (as done in Avalanche). This could incur significant gelad
hence motivating methods that seek to reduce the rewirirts w
out affecting dissemination rates. We propose algorithimas(t)
identify and re-connect only nodes whose re-wiring leadsréak-
ing of clusters(ii) use a variable number of reconnections, adapting
(without centralized knowledge) to the requirements ofrtésvork
topology, andiii) are peer-initiated and scalable.

In Section 2, we briefly discuss Avalanche, illustrate our ap
proach with a simple example, and put our work in context Néat
develop a theoretical framework in Section 3, propose élyos
in Section 4 and present simulation results in Section 5ti@e6
concludes the paper.

2. DESCRIPTION AND MOTIVATION

We start by first briefly reviewing randomized network coding
and describing how Avalanche builds the overlay topology em
ployed for content distribution. We then motivate our wdrfough
an example, and discuss related work.

2.1 Randomized Network Coding

Consider a source with packets to be distributed to a set of
nodes. In randomized network coding [4], each packet israsdu
to consist ofL symbols over a finite field,. This simply means
that, forq = 2™, a packet of lengthn L bits is considered to con-
tain L symbols oveifym , where sets of ofn bits are treated as one
symbol overF,~. Nodes in the network perform operations over
F,. The source sends “coded packets”, each packet consigtang o
uniform at random chosen linear combination of theackets over
F,. Each packet has an appenaexling vectorof sizen symbols
overlF,, that specifies which linear combination each coded packet
carries. Note that for largé (mL bit packets), the overhead of
n symbols m bits) can be made very small. Intermediate nodes
in the network recursively and uniformly at random combineirt
collected packets and create new coded packets that theggate
through the network. Note that the coding vectors a node t&n ¢
ate have to belong in the spanf the coding vectors it has already
collected. Once a node has collected a set of coding vediats t
spans the:.-dimensional space, it has enough information to solve
a system of linear equations and retrieve the source packets

2.2 Avalanche Topology Management

In a nutshell, Avalanche relies on periodically renewedican
selections for the peer neighbors to rewire the employedlaye
network [2, 3]. In more detail, the source forms the first nofihe
overlay network that will be used for the file distributionll Aodes
in this network are connected to a small number of neighldors (
to eight). Neighbors for each arriving node are chosen umifp
at random among already participating nodes, which acbeptd-
licited connection unless they have already reached theimmum
number of neighbors. Each node keeps local topologicatnimée
tion, namely, the identity of the neighbors it is directlynoected

The vectora, . .., v, span am-dimensional space if they form
a basis of this space. Their span, is the set of vectors thatllar
linear combinations of them.

Figure 1: The sourceS distributes packets to the peersA4, B,
C and D over the overlay network (a), that uses the underlying
physical network (b).

to. A special node called registrat keeps track of the lisiaive
peers. Nodes periodically drop one neighbor and reconigeat t
new one, asking the registrat to randomly select the newhbeig
from the active peers list.

The randomized rewiring Avalanche employs results in a fixed
average number of reconnections per node independentigvef h
good or bad is the formed network topology. Thus to achieve a
good, on the average, performance in terms of breakingerhst
entails a much larger number of rewiring and requests todbis+
trat than required, and unnecessary topology changes.

Clearly the registrat, since it allocates to each peer ighiers,
could keep some structural informatiare., keep track of the cur-
rent network topology, and use it to make more educated ehoic
of neighbor allocations. However, the information the ségit can
collect only reflects theverlaynetwork topology, and is oblivious
to bandwidth constraints from the underlying physical $inlAc-
quiring bandwidth information for the underlying physidiaks at
the registrat requires costly estimation techniques oaegel and
heterogeneous networks, and steers towards a centrakrednk
operation. We argue that such bottlenecks can be inferieivady,
thus avoiding these drawbacks.

2.3 Our Approach

Our work starts from the observation that the coding vedtues
peers receive from their neighbors can be used to passnfdy i
bottleneck information. This allows individual nodes tdtiate
topology changes to correct problematic connections. ftiqua
lar, peers by keeping track of the coding vectors they recean
detect problems in both the overlay topology and the unidegly
physical links. The following example illustrates thesénpa

Consider the toy network depicted in Fig. 1(a) where the edge
correspond to logical (overlay network) links. The souschasn
packets to distribute to four peers. NodésB andC are directly
connected to the sourc® and also among themselves with logical
links, while nodeD is connected to noded, B andC. In this
overlay network, each node has constant degree three (tbigle-
bors), and there exist three edge-disjoint paths betwegpain of
nodes (in particular, between the source and any other node)

Assume now (as shown in Fig. 1(b)) that the logical lirtkd,

S B, SC share the bandwidth of the same underlying physical link,
which forms a bottleneck between the source and the rengainin
nodes of the network. As a result, assume the bandwidth dm eac
of these links is onlyl /3 of the bandwidth of the remaining links.
The registrat, even if it keeps track of the complete logmeivork
structure, is oblivious to the existence of the bottlenexdl the
asymmetry between the link bandwidths.



Node D however, can infer this information by observing the
coding vectors it receives from its neighbots B andC. Indeed,
when nodeA receives a coded packet from the source, it will for-
ward a linear combination of the packets it has already cbtbto
nodesB andC andD. Now each of the nodeB andC, once they
receive the packet from nodé, they also attempt to send a coded
packet to nodeD. But these packets will not bring new information
to node D, because they will belong in the linear span of coding
vectors that nod® has already received. Similarly, when nodgs
andC receive a new packet from the source, nddevill end up
being offered three coded packets, one from each of its heigh
and only one of the three will bring to node new information.

More formally, the coding vectors nodds B andC will collect
will effectively span the same subspace; thus the codedepack
they will offer to nodeD to download will belong in significantly
overlapping subspaces and will thus be redundant (we faeal
these intuitive arguments in Section 3). Nddecan infer from this
passively collected information that there is a bottleneekveen
nodesA, B, C and the source, and can thus initiate a connection
change.

2.4 Related Work

Overlay topology monitoring and management that do not em-
ploy network coding has been an intensively studied rebeapic,
see for example [5]. Our proposed approach applies spéhifioa
systems employing network coding.

We have initiated work on taking advantage of the network cod
ing capabilities for active network monitoring in [6, 7] wieethe
focus was on link loss rate inference. Passive inferencalofdss
rates has also been proposed in [8]. However, the idea oivpass
inference of topological properties is a novel contribaotaf this

paper.
3. THEORETICAL FRAMEWORK

We start by formally introducing some notation. We assuna¢ th
the source has packets, each with independent information, to
distribute to a set of nodes. We can think of each packet as-cor
sponding to one dimension of andimensional space, over a finite
field F,. We thus associate with each packet one of the orthonor-
mal basis vector§e, . .., en }, Wheree; is then-dimensional vec-
tor with one at position and zero elsewhere. Each packet has an
associatedh-dimensional coding vector attached to it.

We say that nodg at timet observes a subspate, wherell; is
the vector space spanned by the coding vectors nddes received
up to timet. Initially at timet¢ = 0, I1; is empty. If nodej receives
k linearly independent coding vectors, then

dim(TI;) = k.

A coded packet bringsnovative informatiorif the associated cod-
ing vector does not belong ifl; (it increases thelim(I1;) by
one). Whendim(II;) = n, nodej has collected a basis of the
n-dimensional space and can decode the source information. T
compare subspaces, we will denote

1. the dimension of each subspace as
di = dim(IL), VY i,
2. the dimension of the intersection of two subspaces as
dij = dim(IL; N 11;), VY 4,7,
3. the distance between two subspaces as

Di]‘ = dlm(HL U HJ‘) — dlm(HL N H]‘), vV 1,7.

As also observed in [9], the distand®;; defines a metric space
and can be used to compare how “different” the subspacedrare.
some occasions we will also need a measure that comparesibow t
subspaces of one cluster of nodédliffer from the subspaces of
another cluster of nodeS. For this we will use the average pair-

wise distance
1
Das = D
B 45es

@)

Dij.

Note that the computation of distancés d;;, D;; and D 45 can
be reduced to calculating ranks of certain associated caatriT his
can be done efficiently over finite fields using lattice rethrcal-
gorithms [11].

For simplicity we will assume that the network is synchraosiou
By this we mean that nodes transmit and receive according to a
global clock tick. Nodes are allowed to transmit linear combina-
tions of their received packets only at clock ticks, at a eafeal to
the adjacent link bandwidth. We normalize the transmitt¢ds so
that themaximunrate a node can transmit ispacket per timeslot
in eachof its outgoing edges. A node transmitting information at a
rate% on an outgoing link, sends one coded packet evecjock
ticks.

We will explore in this paper the topological informationre
vealed by the coding vectors at each node. We distinguish two
cases, depending on what information we are allowed to use.

e Local Information: at a given timet, each nodej knows
its own subspace, and the subspaces it has received from its
parent nodes. This is the case we will examine in this paper.

e Global Information: at a given timet, we know the sub-
spaces that all nodes in the network have observed. This is
the maximum information we can hope to get from the cod-
ing vectors propagated through the network, and is studied
in a companion paper [10]. Here we would like to briefly
mention that, for a directed network where information only
flows from parent to child nodes, and under some mild con-
ditions, knowledge of the subspaces of all nodes in the net-
work, allows to uniquely determine how the network nodes
are connected. This is a surprising result, indicating tiat
topological information carried from the subspaces is @t fa
quite significant.

In the following, we will also use the notion of min-cut vatue
Let A and B denote two disjoint sets of vertices of the graph. A
cut value is defined as the sum of the capacities of a set okedge
we need to remove to disconnect sgtsand 5. The min-cut is
the minimum cut value. The celebrated min-cut max-flow taeor
states that if the min-cut value between two nodes equalsen
the maximum information rate we can convey from one to anothe
also equalg.

3.1 Local Information

LetII; = II; U...UIL. denote the subspace spanned by the cod-
ipg vectors a node has collected at a fixed time instance, where
II4,...,II. denote the subspaces that it has received froma its
neighborsu, . .., u.. We are interested in understanding what in-
formation we can infer from these received subspates . . , I1..

For example, the overlap of subspaces from the neighboealev
something about a bottleneck. Therefore, we need to shoiv tha
such overlaps occur due to topological properties and nettdu
particular random linear combinations chosen by the nd¢wode.

2This is not essential for the algorithms but simplify thediegical
analysis.



The following lemmas present some properties that the sulesp
observed by the network nodes and the rates at which thear siz
increases, need obey.

LEMMA 1. LetIl, be ak-dimensional subspace of the vector
spaceF7, i.e.,dr = k. Construct the subspadé,, by selecting
m < nvectors{wi, ..., wn,} uniformly at random fronfy . Un-
der the assumption that>> 1 it holds® that

Pr[d,» =m] ~ 1, and

1 ifd=(m—(n—k)*,

Pridem = d] ~ { 0 otherwise

Proof. Let IT;- be the subspace with the propeily, U II; =
Fy, andU = {u1,...,ux} andV = {vi,...,vn_x} be sets of
basis vectors foFl;, andIl; respectively. We can then expand the
vectors{wsi, ..., wm } as

k n
Jj=1

j=k+1

i=1,...,m.

Let A be then x m matrix with columns the vectors'”), and
denote byUkxm, Vin—r)xm the sub matrices oft collecting the
coefficients with the respect {6 andV:

kam

e ™

‘A}(nfk)xm

For ¢ > 1, the matrixA is full rank with probability approaching
one, and thu®r[d,, = m] ~ 1 (see also [4]). To calculai&,,, =
dim(ITx N II,,), note that the vectors that belong inll; N II,,
satisfy the equation

kaxm a bl
1
~ = bi, ’
‘/(nfk)xm Am
O(n—r)x1

and thus belong in the kernel (null space) of the md&mk)xm.
For ¢ >> 1 this matrix is full rank with high probability. As a
result,

dim(Kermne Vi, _x)xm))

= m—RankV,_x)xm)
m — min(m,n — k)

(m—(n—Fk)".

Q

d

LEMMA 2. LetIl; andII; be two subspaces Bf; with dimen-
siond; and d; respectively, and intersectidi;; = II; N II; of
sized;;. Constructil; andIl; by choosingn; < d; andm,; < d;
vectors uniformly at random froii; andIl; respectively. Then the
size of their intersectiod;; = dim(Il; N I1;) satisfies

1 d=(mi+m;—(di+d; —dij)) ",

Pridi; = d] ~ { 0 otherwise,

Proof. The proof follows by applying the previous lemma twice,
once onll; and once oil;. We denotdl = II; N IT;;.

3The = notation means that this is true with probabilitasg —
Q.

1. From Lemma 1J1; has dimensiom:; w.h.p., and its intersection
with I1;; has dimensiod = (m;—(d;—d,;))". 2. FromLemma 1,
I1; has dimensiom:; w.h.p., and its intersection with the subspace
IT has dimension

—(dj —d))* = (mi+m; — (di +dj —diy))". O

Lemma 3 can be proved following a very similar approach to the
main theorem in network coding [1].

dij = (m;

LEMMA 3. In a synchronous network where the min-cut to a
node: is ¢, after a transition phase of the network, nadeceives
c innovative packets per time slot from its neighbors.

Assume for example that the subspatks. .., II. a nodei re-
ceives from its set of neighbors:;} have an intersection of di-
mensiond. This implies that(i) from Lemma 3, the min-cut be-
tween the node$u; } and the source is smaller than the min-cut
between the nodeé and {u;}, and (ii), from Lemma 2, the sub-
spacedly, ..., II. of the neighbors have an intersection of size at
leastd. Next we will discuss algorithms that use such observations
for decentralized topology management.

4. ALGORITHMS

Our peer-initiated algorithms for topology managementsgsin
of three tasks:

1. Each peer decides whether it is satisfied with its conoecti
or not, using alecision criterion

2. Anunsatisfied peer sendsaviring requestthat can contain
different levels of information, either directly to the istat,
or to its neighbors (these are the only nodes the peer can
communicate with).

3. Finally, the registrat, having received rewiring reqagslo-
cates neighborso nodes to be reconnected.

The decision criterion can capitalize on the fact that @perl
ping received subspaces indicate an opportunity for ingrwnt.
For example, a node can decide it is not satisfied with a partic
lar neighbor, if it receiveg > 0, non-innovative coding vectors
from it, wherek is a parameter to be decided. The first algorithm
we propose Algorithm 1) uses this decision criterion; it then has
each unsatisfied node directly contact the registrat ancifgptee
neighbor it would like to change. The registrat randomlyestd a
new neighbor. This algorithm, as we demonstrate throughilsim
tion results, may lead to more rewirings than necessargedgdall
nodes inside a cluster may attempt to change their neighlvbike
it would have been sufficient for a fraction of them to do so.

Our second algorithmA(gorithm 2) uses a different decision
criterion: for every two neighborsandj, each peer computes the
rate at which the received joint spatk U f[j and intersection
spacell; N I1; increases. If the ratio between these two rates be-
comes greater than a threshdld the node decides it would like
to change one of the two neighbors. However, instead of tiijrec
contacting the registrat, it uses a decentralized votinthatethat
attempts to further reduce the number of re-connections.oden
unsatisfied with a particular neighbor sends a request$aigh-
bor indicating so. Every node collects all such requeseci¢ives,
and only after it collects a certain numbar of them, it sends a
request to the registrat requesting to be rewired. Thetragihen
randomly selects and allocates one new neighbor.

Our last proposed algorithmAlgorithm 3), while still peer-
initiated and decentralized, relies more than the two previones
in the computational capabilities of the registrat, angeciically



targeted to breaking topological clusters. The basic absien
is that, nodes in the same cluster will not only receive aperl
ping subspaces from their parents, but moreover, they will @
collecting subspaces with very small distance (this fodwom
Lemmas 1-3 and is also illustrated through simulation tesul
Section 5). Each unsatisfied peesends a rewiring request to the
registrat, indicating to the registrat the subspHgét has collected.
A peer can decide it is not satisfied using for example the saime
terion as in Algorithm 2.

The registrat waits for a short time period, to collect resise

registrat assigns nodéand; in the same cluster iD;; < 7, where
D;; is defined in Section 3.

Table 1 compares all algorithms with respect to the averalje ¢
lection time, defined as the difference between the time angee
ceives the first packet and the time it can decode all packets,
averaged over all peers. All algorithms perform similaitgicat-
ing that all algorithms result in breaking the clusterss innportant
to note that these average collection times is in terms ofbauraf
exchanges needed addes noticcount for the delays incurred due
to rewiring. We compare the number of such rewirings neeégtl n

from a number of dissatisfied nodes. These are the nodes of the Fig. 5 plots the average number of rewirings each algorithm e

network that have detected they are inside clusters. It théu-
lates the distance between the identified subspaces toedebidh
peers belong in the same cluster. While exact such calooktian
be computationally demanding, in practice, the registeat ase
one of the many hashing algorithms to efficiently do so. Fyrthie
registrat breaks the clusters by rewiring a small numbercofes
in each cluster. The allocated new neighbors are eithersntbda
belong in different clusters, or, nodes that have not semdvaing
request at all.

We will compare our algorithms against tRandom Rewiring
currently employed by Avalanche. In this algorithm, eachetia
peer receives a packet, with probabilitgontacts the registrat and
asks to change a neighbor. The registrat randomly seledthwh
neighbor to change, and randomly allocates a new neighbor fr
the active peer nodes.

5. SIMULATION RESULTS

For our simulation results we will start from the topologhyg-
trated in Fig. 2, that consists 8 nodes connected into three dis-
tinct clusters. The source is nodleand belongs in the first cluster.
The bottleneck links are indicated with arrows (and thusciig
the underlying physical link structure). Our first set of glation
results depicted in Fig. 4 and 3 show that the subspaceswetith
cluster are very similar, while the subspaces across chiate sig-
nificantly different, where we use the distance measure)inNtte
that, the smaller the bottleneck, the larger the “simijdrif sub-
spaces within the same cluster, and also, the larger therelifte
across clusters. These results indicate for example ttmatlkdge
of these subspaces will allow the registrat to accuratelgaend
break clusters (Algorithm 3).

Our second set of simulation results considers again adggol
with three clusters: clustdrhas15 nodes and contains the source,
cluster2 has alsal5 nodes, while the number of nodes in clusier
increases froni5 to 250. During the simulations we assume that
the registrat keep the nodes’ degree betw2amd5, with an av-
erage degree d.5. All edges correspond to unit capacity links.
An experiment terminates once all peers have collectechaKets.
The values presented are averaged dgeexperiments, where in
each experiment the source sehdpackets to the peers.

We compare the performance of the three proposed algorithms
Section 4 with random rewiring, currently employed by Avalhe.
We implemented these algorithms as follows. For randomriegyi
every time a node receives a packet it changes one of itstmmigh

with probabilityp = % For Algorithm 1, we use a parameter of

ploys. Random rewiring incurs a number of rewirings projoou!

to the number of P2P nodes, and independently from the yrderl
ing network topology. Our proposed algorithms on the otlah
adapt to the existence and size of clusters. Algorigieads to the
smallest number of rewirings. Algorithehleads to a larger number
of rewirings, partly due to that the new neighbors are choaen
domly and not in a manner that necessarily breaks the ctustee
behavior of algorithml is interesting. This algorithm rewires any
node that has received more thamon-innovative packets. Con-
sider cluste, whose size we increase for the simulationsk 1§
small with respect to the cluster size, then a large numberodés
will collect close tok non-innovative packets; thus a large number
of nodes will ask for rewirings. Moreover, even after remiy$ that
break the cluster occur, some nodes will still collect liheale-
pendent information and ask for additional rewirings. Asstér3
increases in size, the information disseminates more glaithin
the cluster. Nodes in the border, close to the bottleneds Jiwill
now be the ones to first ask for rewirings, long before otheleso
in the network collect a large number of non-innovative sk
Thus once the clusters are broken, no new rewirings will be re
quested. This desirable behavior of AlgoritHhmanifests itself
for large clusters; for small clusters, such as clugtehe second
algorithm for example achieves a better performance ugisgre-
connections.
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Figure 5: Average number of rewirings, for a topology with

k = 10, and check whether the non-innovative packets received ex- three clusters: cluster1 has 15 nodes, cluster2 has 15 nodes,

ceed this value every four received packets. For Algorithevary
node checks each received subspaces every four receivketpac
using the threshold valug = 1. Nodes that receivé\ = 2 or
more rewiring requests contact the registrat. Finally fagokithm
3, we assume that nodes use the same criterion as in Algoritom 2
decide whether they form part of a cluster, again Witk= 1. Dis-
satisfied node send their observed subspaces to the regiEhma

while the number of nodes in cluster3 increases from20 to 250
as described in Tablel.

6. CONCLUSIONS
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Figure 4: Additional results for the topology in Fig. 2, with bottleneck link capacity values equal ta0.5 (left) and 1 (right).

Table 1: Average Collection Time
Topology | Random| Algo1 | Algo2 | Algo 3
15-15-20 20.98 22.14 20.57 20.39
15-15—+40 18.72 21.13 19.36 19.47
15-15-70 18.88 21.54 18.97 19.54

15-15-100 18.6 21.48 18.91 21.42
15-15-150 | 19.56 20.85 | 19.96 | 20.18
15-15-250 18.79 19.8 19.18 18.99

In this paper we observed that, in a P2P network utilizing net
work coding the linear combinations a peer receives frometgh-
bors unravel structural information about the network togg. We
propose methods to capitalize on this fact for passive énfez of
network characteristics, and peer-initiated overlay gy man-
agement. This is a first paper introducing these ideas, and tre
a number of associated questions and research directianstiih
need to be explored such as, combining with proposed tegbsiq
for distributed management of systems that do not employarét
coding, and security concerns.
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