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Abstract— Randomized network coding has network nodes
randomly combine and exchange linear combinations of the
source packets. A header appended to the packet, called coding
vector, specifies the exact linear combination that each packet
carries. The main contribution of this work 1 is to investigate
properties of the subspaces spanned by the collected coding
vectors in each network node. We use these properties to exhibit
the relationship between the network topology and the subspaces
collected at the nodes. This allows us to passively infer the
network topology for a general class of graphs.

I. I NTRODUCTION

Consider a networkG = (V, E) where a sourceS ∈ V
has a set ofn independent packets to distribute to a set of
receivers using network coding techniques [1], and each packet
is a sequence of symbols over a finite fieldFq. We can think
of each source packet as corresponding to one dimension of
an n-dimensional space overFq. We can thus associate with
each packet one of the orthonormal basis vectors{e1, . . . , en},
whereei is the n-dimensional vector with one at positioni
and zero elsewhere.

In randomized network coding, every node sends uniform at
random linear combinations overFq of its collected packets
to its neighbors [2]. To enable decoding, ann-dimensional
vector Fn

q , called coding vector, is appended to each packet,
to denote the expansion of the packet with respect to then
basis source packet vectors [3]. We say that nodei ∈ V at
time t observes a subspaceΠi(t) ⊆ Fn

q , if Πi(t) is the space
spanned by the received coding vectors at nodei up to time
t. When dim(Πi) = n, node i has collected a basis of the
n-dimensional space, and can decode the source information.

In this paper, we establish a relationship between the
network topology and the subspaces observed by the nodes
over time. We are interested in the conditions under which
there exists a unique topology corresponding to a given set
of |V | observed subspaces. Although the focus of this paper
is on understanding the connection between subspaces and
network topology from a theoretical point of view, this work
has also a variety of applications, for example on examine
such applications in other work [4], [5].

Taking advantage of network coding for active network
monitoring was proposed in [6], [7], where the focus was
on link loss rate inference. Passive inference of link loss
rates has also been proposed in [8]. The connection between
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subspaces and topological properties of the network is a novel
contribution of this paper.

The paper is organized as follows. Section II describes our
model; Section III investigates properties of randomly chosen
subspaces and their evolution; Section IV presents resultsfor
tree topologies; Section V generalizes our work to arbitrary
topologies; and finally Section VI concludes the paper with a
short discussion.

II. N ETWORK MODEL

Consider a network represented as a connected graphG =
(V, E), with |V | nodes and|E| edges, and assume that
each edge has integer (and positive) capacity. The connection
between network topology and subspaces observed depends
on the dissemination protocol. It can be further aided by the
prior information about the network structure.

For example, we can consider a synchronous or an asyn-
chronous network operation model.

• Synchronous:All nodes are synchronized and transmit to
their neighbors according to a global clock tick (time-
slot). At timet nodei sends linear combinations from all
vectors it has collected up timet− 1, chosen uniformly
at random fromΠi(t− 1). Once nodes start transmitting
information, they keep transmitting until all receivers are
able to decode.

• Asynchronous:Nodes transmit linear combinations at
randomly and independently chosen time instants.

Moreover, we may assume that we have
• Global information: A central entity knows the subspaces

that all |V | nodes in the network have observed.
• Local Information:There is no such omniscient entity,

and each nodei only knows what it has received, its own
subspaceΠi.

Finally we may have astatic view, where we take a snapshot
of the network at a given time instantt, or a non-static view,
where we take several snapshots of the network and use the
subspaces’ evolution to infer topological information. Inthis
paper we will

1) restrict our attention to synchronous operation (a similar
approach can be used for the asynchronous case),

2) consider networks with a single sourceS injecting
packets (similar techniques apply for multiple sources),
and

3) assume global information. Global information is the
maximum information we can hope to get from the
coding vectors propagated through the network. We
focus on local information in a companion paper [4].



Definitions and Notation

Let Πi(t) denote the subspace nodei has collected up to
time t. For simplicity of notation, we will dropt when not
necessary and useΠi. To compare subspacesΠi andΠj , we
will denote
1. the dimension of each subspace as

di , dim(Πi), ∀i,

2. the dimension of the intersection of two subspaces as

dij , dim(Πi ∩Πj), ∀i, j,

3. the dimension of the joint span of two subspaces as

Dij , dim(Πi ∪Πj) ∀i, j,

where by union we mean the common span ofΠi, Πj , i.e.,
Πi ∪Πj = span{Πi, Πj}. Note that di + dj = dij + Dij .
For a set of nodesU = {u1, . . . , um}, we will denote as
dU , dim(Πu1 ∪ . . . ∪Πum

).
Initially, at time t = 0, the subspaces of all nodes (apart the

source) are empty. We define the transition phase to be the
time during which some of the nodes have started receiving
packets, while other nodes have not.

Definition 1: The transition phase thresholdτ of an algo-
rithm, is the first timeτ at which each edge of the network
has been used at least once.
We say that a network is insteady state phaseif t >
τ , and none of the receivers is able to decode the source
packets. Throughout this paper, we require that the topology
identification occurs atany timeduring the steady state phase
of the network.

We will consider connected networks, where each node,
apart from the source, has at least one node (parent) trans-
mitting information to it. If nodei haspi parentsu1, . . . , upi

,
we will denote withΠ̂

(i)
uj (t) the subspace nodei has received

from parentuj up to time t, and with π̂
(i)
uj (t) the subspace

node i receives from parentuj at exactly time t. Thus,
Π̂

(i)
uj (t) = Π̂

(i)
uj (t− 1) ∪ π̂

(i)
uj (t), andΠi(t) = ∪pi

j=1Π̂
(i)
uj (t).

III. PROPERTIES OFSUBSPACES

A. Subspaces in General Position

The intuition why looking at subspaces can enable us
to distinguish between topologies, is that randomly chosen
subspaces over a large enough finite field tend to be ingeneral
position.We say that a set ofm vectors are in general position
over an n-dimensional spaceFn

q if every k ≤ n of these
vectors are linearly independent [9]. The notion of general
position extends over subspaces: two subspaces are said to
be in general position if they are “as far away as possible”,
i.e., given their dimension, they have the smallest possible
intersection [9].

The following lemmas, that we are going to use in the
remaining of the paper, prove such general position properties.

Lemma 1:Construct the subspacesΠ1 and Π2 of the
n-dimensional spaceFn

q , by choosingm1 ≤ n and m2 ≤ n

vectors respectively, uniformly at random fromFn
q . Then with

high probability2

1) the subspaces have the maximum dimension possible,
i.e., Pr[d1 = m1] ≈ 1, Pr[d2 = m2] ≈ 1, and

2) the intersection of the subspaces is the minimum possi-
ble Pr[d12 = max{d1 + d2 − n, 0}] ≈ 1.

Proof: For the first claim, andi = 1, 2, it holds that

Pr(dim(Πi) = mi) =

mi−1∏

j=0

(1− qj−n)

≥



1−

mi−1∑

j=0

qj−n



 ≈ 1

(see also [2]). To prove the second claim, letΠ⊥
1 be the orthog-

onal complement toΠ1, i.e., the unique subspace that has zero
intersection withΠ1 and satisfies the propertyΠ1∪Π⊥

1 = Fn
q .

Let alsoU = {u1, . . . , um1} and V = {v1, . . . , vn−m1} be
sets of basis vectors forΠ1 and Π⊥

1 respectively, where we
used that, from(1), Π1 has dimensionm1. We can then expand
the m2 randomly selected vectorsW = {w1, . . . , wm2} that
generateΠ2 as

wi =

m1∑

j=1

α
(i)
j uj +

n∑

j=m1+1

α
(i)
j vj−m1 , i = 1, . . . , m1.

Let A be then ×m2 matrix with columns the vectorsα(j),
and denote bỹUm1×m2 , Ṽ(n−m1)×m2

the sub matrices ofA
collecting the coefficients with the respect toU andV :

A =




| |

α(1) · · · α(m2)

| |



 =




Ũm1×m2

Ṽ(n−m1)×m2




.

To calculated12 = dim(Π1∩Π2), note that eachn×1 vector
in Π1 ∩Π2, (i) since it belongs inΠ2 it can be expanded with
respect toW using a uniquem2× 1 coefficient vectorα, and
(ii) since it belongs inΠ1 the vectorα satisfies the equation




Ũm1×m2

Ṽ(n−m1)×m2



·




α1

...
αm2


 =




b1

...
bm1

0(n−m1)×1




.

Thus α belongs in the kernel (null space) of the matrix
Ṽ(n−m1)×m2

. For q ≫ 1 this matrix is full rank with high
probability. As a result,

dim(Kernel(Ṽ(n−m1)×m2
)) = m2 − Rank(Ṽ(n−m1)×m2

)

≈ m2 −min(m2, n−m1)

= max{m1 + m2 − n, 0}.�

2The≈ notation means that this is true with probability1 asq → ∞.



Under the conditions of Lemma 1, if for exampled1+d2 < n,
the subspaces are disjoint, while ifd1 < n and d2 < n they
are distinct and differ in at least one dimension.

Lemma 2:Let Πi andΠj be subspaces ofFn
q with dimen-

siondi anddj respectively and intersection of dimensiondij .
ConstructΠ′

i by choosingm vectors fromΠi uniformly at
random. ThenPr(Π′

i ⊂ Πj) ≈ 0, if Πi * Πj .
Proof: The probability thatall m vectors are in the

intersection is

Pr(Π′

i ⊂ Πj) =

(
qdij

qdi

)m

= q(dij−di)m,

which is of orderO(1/q) provided thatdij < di.

B. Min-cut and Innovative Information

The following theorem considers the rate at which the
dimension of the subspace a node observes increases.

Theorem 1:Consider a synchronous network operation, and
randomized network coding over a fieldFq. Then each node
i receives innovative packets from the source at a rate that is
upper-bounded by min-cut(S, i). It receives innovative packets
at a rate exactly equal to min-cut(S, i), if the network is in
the steady state and the field sizeq is sufficiently large.

Proof: The proof uses the algebraic approach in [10] to
express the transfer matrix between each nodei and the source,
and the Schwartz-Zippel lemma to upper bound the probability
that randomly chosen values for the linear combinations lead
to a transfer matrix with rank equal to min-cut(S, i). The
detailed proof is given in [5].

IV. T REE TOPOLOGIES

Let G = (V, E) be a network that is a directed tree of depth3

D, rooted at the source nodeS. We will present(i) necessary
and sufficient conditions under which the tree topology can
be uniquely identified, and(ii) given that these conditions are
satisfied, algorithms that allow us to do so.

We first consider trees where each edge has the same
capacity c, and thus the min-cut from the source to each
node of the tree equalsc. We then briefly discuss the case
of undirected trees. Finally we examine the case where edges
have different capacities, and thus nodes may have different
min-cuts from the source.

A. Common Min-Cut

Assume that each edge of the tree has capacityc, and
consider the following dissemination algorithm, also summa-
rized4 in Algorithm IV.1. Each nodei waits until its subspace
dimension becomesmi, i.e., di ≥ mi (for this section we will
use a common valuemi = m). It then starts transmitting to
each of its childrenc random linear combinations per time-
slot.

3The depth of a tree is the length of the longest path between the root and
a leaf of the tree.

4Though the Algorithm IV.1 is introduced for trees, it will also be used for
general topologies in Section V.

Algorithm IV.1: INPUT(G = (V, E), S, {mi}, n)

for each i ∈ V \ {S}
do Πi(0) = Ø, di(0) = 0

t← 0
while mini di(t) < n

do






for each i ∈ V
if di(t) ≥ mi

then nodei transmits fromΠi(t)
t← t + 1
for each i ∈ V updateΠi(t), di(t)

The following theorem presents necessary and sufficient
conditions that enable us to identify the network topology
using a single snapshot of all node’s subspaces at a timet.

Theorem 2:Consider a tree of depthD where each edge has
capacityc, and the dissemination algorithm in IV.1. A static
global view of the network at timet, with (D − 1)m < t < n

c
,

allows to uniquely determine the tree structure, if and onlyif

c + 1 ≤ m. (1)
Proof: The proof is based on the following sim-

ple observations. In a tree there exist a unique path
P = {S, i1, . . . , il, i} from sourceS to node i. Clearly, in
steady-state, for the nodes along the path it holds that

Πi ⊂ Πil
⊂ · · · ⊂ Πi1 ⊂ Fn

q = ΠS . (2)

The conditions ont ensure that the network is in steady-
state,i.e., all nodes have a non-empty subspace and no node’s
subspace (apart the source) equals the completen-dimensional
space.

Thus to identify the topology of the tree it is sufficient to
show thatΠi * Πj for any j that is not inP . But this is what
the condition in (1) ensures. Indeed, consider a nodeu ∈ V
in the tree that hask children u1, . . . , uk. If (1) holds, from
Lemma 1, thenΠui

6= Πuj
for all i, j if and only if m ≥ c+1

andq ≫ 1.
Thus the condition (1) onm ensures that the subspaces of all
nodes in the tree are distinct during the steady-state phase.
Obviously, if two nodes observe exactly the same subspace
at time t, we can never distinguish between them; ensuring
distinct subspaces is clearly necessary for identifiability.

The simple network in Fig. 1 can help us better understand
why the conditions onm in Theorem 2 are both necessary and
sufficient. Assume that the edges have unit capacity (c = 1).
At time t = 1, nodeA receives a vectory1 from the sourceS.
If nodeA starts transmitting to nodesB andC at timet = 2,
then nodesB andC will both receive the same vectory1, i.e.,
ΠB(2) = ΠC(2) = span{y1}. In fact, at all subsequent times,
we will have thatΠB(t) = ΠC(t) = ΠA(t − 1). If instead,
nodeA waits to collectc + 1 = 2 vectors, sayy1 and y2,
before starting transmission to nodesB and C, then it will
hold thatΠB(t) 6= ΠC(t), for 2 ≤ t ≤ n + 1.

Assume now that Theorem 2 holds. To determine the tree
structure, it is sufficient to determine the unique parent each
node has. From the previous arguments, the parent of nodei
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Fig. 1. Directed tree with four nodes rooted at the sourceS.

is the unique nodej such thatΠj is the minimum dimension
subspace that containsΠi. Then, the parent of nodei is the
nodej such that,j = argmink:dik=di

dk. Note that to determine
the tree topology, we do not need to know exactly which
are the node subspaces, but only two “sufficient statistics”:
the dimension of each subspacedi = dim(Πi), ∀i, and
the dimension of the intersection of every two subspaces
dij = dim(Πi ∩ Πj), ∀i, j, as described in Algorithm IV.2,
assuming that the conditions of Theorem 2 hold.

Algorithm IV.2: TREE({di}, {dij})

for each i ∈ V

do






if di = n, i← S
elsenodei has parent the nodej with

j = argmink:dik=di
dk

B. Directed v.s. Undirected Network

In a tree with a single source, since new information
can only flow from the source to each node along a single
path, whether the network is directed or undirected makes no
difference. In other words, from condition (2), all vectorsthat
a node will send to its predecessor will belong in the subspace
the predecessor already has. Thus Theorem 2 still holds for
undirected networks with a common min-cut.

C. Different Min-Cuts

Assume now that the edges of the tree have different
capacities. As a result, potentially mincut(S, i) 6= mincut(j, i),
for some nodej in the pathP that connects nodei to the
sourceS. Note that, under Algorithm IV.1, for the subspaces of
the nodes in the path betweenS andi, condition (2) still holds.
However, it is possible that we cannot distinguish between
nodes at same level with a common parent. For example, if
in the network in Fig. 1, edgeSA has unit capacity, while
edgeAB andAC have capacity two. In this case it is easy to
see that there existst0 such thatΠB(t) = ΠC(t) = ΠA(t− 1),
∀t ≥ t0. Clearly in this case, we cannot distinguish between
nodesB andC with this dissemination protocol.

V. GENERAL TOPOLOGIES

Consider now an arbitrary network topology, corresponding
to a directed graph. An intuition we can get from examining
tree structures is that, we can distinguish between two topolo-
gies provided all node subspaces are distinct. The following

theorem5 claims that this is in fact a sufficient condition for
topology identifiability over general graphs.

Theorem 3:In a synchronous network employing random-
ized network coding overFq, a sufficient condition to uniquely
identify the topology with high probability asq ≫ 1, is that

Πi(t) 6= Πj(t) ∀ i, j ∈ V, i 6= j, (3)

for some timet. We can achieve this by collecting global
information at timest and t + 1, i.e., two consecutive static
views of the network.

Proof: Assume nodei has thepi parentsP (i) =

{u1, . . . , upi
}. Let Π̂

(i)
u1 (t), . . . , Π̂

(i)
upi

(t) denote the subspaces
node i has received from its parents up to timet, where
Πi(t) = ∪pi

j=1Π̂
(i)
uj (t). From construction it is clear that

Π̂
(i)
uj (t + 1) ⊆ Πuj

(t).
To identify the network topology, it is sufficient to decide

which nodev ∈ V is the parent that sent the subspaceΠ̂
(i)
uj (t)

to nodei for eachj, and thus find thepi parents of nodei.
We claim that, provided (3) holds, nodei has as parent the
nodev which at timet has the smallest dimension subspace
containing Π̂

(i)
uj (t + 1). Thus we can uniquely identify the

network topology, by two static views, at timest and t + 1,
as Algorithm V.1 describes.

Indeed, let π̂
(i)
uj (t) denote the subspace that nodei

receives from parentuj at exactly time t, that is,
Π̂

(i)
uj (t + 1) = Π̂

(i)
uj (t) ∪ π̂

(i)
uj (t + 1).

• If π̂
(i)
uj (t + 1) * Πv(t) for all v ∈ V \{uj}, clearly

Π̂
(i)
uj (t + 1) * Πv(t) for all v ∈ V \{uj}, and we are done.
• Assume now there exist two nodesj and k such that
Π̂

(i)
uj ⊆ Πj ⊂ Πk. From Lemma 2, nodei cannot be a child

of nodek, because then we would have thatπ̂
(i)
uj * Πj , and

as a result,̂Π(i)
uj * Πj . Thus it can only be a child of nodej.

Note that to identify the network topology, we need to know,
for all nodesi, the dimension of their observed subspaces at
time t, the dimension̂d

u
(i)
j

, dim(Π̂
(i)
uj (t+1)) for all parentsj

of nodei, and the dimension of the intersection ofΠ̂
(i)
uj (t+1)

with all Πk(t), denoted aŝd
ku

(i)
j

, dim(Π̂
(i)
uj (t + 1) ∩Πk(t)).

Algorithm V.1 uses this information to infer the topology.

Algorithm V.1: GEN({di(t)}, {d̂u
(i)
j

}, {d̂
ku

(i)
j

})

for each i ∈ V

do





if di = n, i← S
elsenodei has parent the nodej with

j = argmin
k:d̂

ku
(i)
j

=d̂
u
(i)
j

dk(t)

The sufficient conditions in (3), Theorem 3, may or may not
hold, depending on the network topology and the information

5Note that if we identify the parents of each node, we know the graph
topology.



dissemination protocol. Next, we will investigate under what
conditions there exist values{mi} for the simple dissemina-
tion algorithm IV.1 so that (3) holds, and the network topology
is identifiable.

Lemma 3:Consider two arbitrary nodesi and j, where
P (i) = {u1, . . . , upi

} andP (j) = {v1, . . . , vpj
} are the par-

ents ofi andj respectively. LetΠP (i)(t−1) =∪pi

l=1Πul
(t− 1)

and ΠP (j)(t − 1) = ∪
pj

l=1Πvl
(t − 1). The condition

ΠP (i)(t− 1) 6= ΠP (j)(t− 1) is sufficient to guarantee that
Πi(t) 6= Πj(t).

Proof: Let us assume thatΠi(t) = Πj(t) = Π. This
implies that ifπi(t) andπj(t) are subspaces collected at time
t then,

πi(t) ∪Πi(t− 1) = πj(t) ∪Πj(t− 1) = Π.

From construction,Πi(t − 1) ⊆ ΠP (i)(t − 1) and πi(t) ⊆
ΠP (i)(t− 1) so we haveΠ ⊆ ΠP (i)(t− 1). The same is true
for node j,Π ⊆ ΠP (j)(t− 1).

On the other hand, using Lemma 2, since we randomly
choseπi(t) from ΠP (i)(t − 1) and sinceπi(t) is a subspace
of Π, we should have thatΠP (i)(t − 1) ⊆ Π, and similarly
that ΠP (j)(t− 1) ⊆ Π. We conclude that

ΠP (i)(t− 1) = ΠP (j)(t− 1) = Π,

which gives us the result.
Now consider the parents of nodesi and j as supernodes

P (i) andP (j). Using a similar argument we can conclude that
the parents ofP (i) and P (j), denoted asP 2(i) and P 2(j),
satisfy

ΠP 2(i)(t− 2) = ΠP 2(j)(t− 2) = Π,

whereΠi(t) = Πj(t) = Π, and dim(Π) = d < n. Continuing
this procedure, and including at least one new node in the
set of parents at each step, we will at some stepℓ, either
have P ℓ(i) include the source nodeS, which leads to a
contradiction since the dimension of the subspaceΠP ℓ(i)(t−ℓ)
is d < n (similarly if P ℓ(j) includes the sourceS), or
that P ℓ(i) = P ℓ(j). To resolve this last case, we evoke the
following theorem.

Theorem 4:Suppose two arbitrary nodesi and j have a
common set of parentsP ℓ = P ℓ(i) = P ℓ(j) at a levelℓ. The
following conditions are sufficient to let exist some{mi} for
the Algorithm IV.1 such that (3) will be satisfied6:

ĉi = min-cut(P ℓ, i) ≤ min-cut(S, P ℓ) = cp,

ĉj = min-cut(P ℓ, j) ≤ min-cut(S, P ℓ) = cp.
Proof: Let us assume thatt0 is the first time that

dim(ΠP ℓ) ≥ cp + 1 and the time after whichP ℓ receives
innovative packets at a rate ofcp. Assume thatP ℓ starts
transmission aftert0. For t1 time slots later we can write

dim(ΠP ℓ(t0 + t1)) ≥ t1cp + cp + 1.

For nodei we can also write

dim(Πi(t0 + t1 + l)) ≤ (t1 + 1)ĉi ≤ t1cp + cp.

6Note that ifci = min-cut(S, i), ci = min{ĉi, cp}.

The same inequality holds for the dimension of
Πj(t0 + t1 + l). Thus for t − l > t0 we cannot have
ΠP ℓ(t− l) = Πi(t) and ΠP ℓ(t− l) = Πj(t). Using Lemma
3 we are done.

Intuitively, what the previous theorems tell us is that, if
for a nodei there exists a path that does not belong in any
cut between the source and another nodej, then nodesi
and j will definitely have distinct subspaces. The only case
where nodesi and j may have the same subspace is, if they
have a common set of parents, a common cut. Even then,
they would need both of them to receive all the innovative
information that flows through the common cut at the same
time. Note that the condition of Theorem 4 are also necessary
for identifiability for the special case of tree topologies,such
as the topology in Fig. 1. We can develop dissemination
techniques for general topologies that satisfy the sufficient
conditions given in Theorem 4 by using a decentralized rate
control strategy [5]. This can be done with almost no affect
on the dissemination rate.

VI. CONCLUSIONS

In this paper we have shown that (for a class of graphs)
one could design network coding algorithms which reveal
topological structure of the graph while not affecting the
dissemination rates. This connection between subspaces of
network coded packets and network properties could be useful
in other contexts as well. We have only considered the case
where the identifiability occurs atany timeduring the steady
state, and sufficient conditions for this. If one relaxes this or
has further prior information about the network topology, one
could also design other schemes [5].
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