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Abstract— Randomized network coding has network nodes subspaces and topological properties of the network is alnov
randomly combine and exchange linear combinations of the contribution of this paper.
source packets. A header appended to the packet, called codi  The paper is organized as follows. Section Il describes our
vector, specifies the exact linear combination that each paet del: Section Il | tigat . f domlvsso
carries. The main contribution of this work?® is to investigate modael, section |r_1ves |ga_es prope_r Ies of randomly
properties of the subspaces spanned by the collected COdingsubspaces and their evolution; Section IV presents refrlts
vectors in each network node. We use these properties to exfii  tree topologies; Section V generalizes our work to arbyjtrar

the relationship between the network topology and the subsgces topologies; and finally Section VI concludes the paper with a
collected at the nodes. This allows us to passively infer the ghort discussion.
network topology for a general class of graphs.
Il. NETWORK MODEL
|. INTRODUCTION Consider a network represented as a connected gragh
] (V,E), with |V| nodes and|E| edges, and assume that

Consider a networky = (V, E) where a source&' € V' gach edge has integer (and positive) capacity. The coomecti
has a set ofn independent packets to distribute to a set Qfgtween network topology and subspaces observed depends
receivers using network coding techniques [1], and eacketacyp, the dissemination protocol. It can be further aided by the
is a sequence of symbols over a finite figlgl We can think jor information about the network structure.

of each source packet as corresponding to one dimension ofor example, we can consider a synchronous or an asyn-
an n-dimensional space ovéf,. We can thus associate Withchronous network operation model.

each packet one of the orthonormal basis vecters. . ., e_n_}g « SynchronousAll nodes are synchronized and transmit to
wheree; is the n-dimensional vector with one at positian their neighbors according to a global clock tick (time-
and zero elsewhere. _ _ slot). At timet node: sends linear combinations from all
In randomized network coding, every node sends uniformat  yectors it has collected up time— 1, chosen uniformly
random linear combinations ové, of its collected packets at random fromiI;(t — 1). Once nodes start transmitting
to its neighbors [2]. To enable decoding, ardimensional information, they keep transmitting until all receiverg ar

vectorFy, called coding vector, is appended to each packet, gple to decode.

to denote the expansion of the packet with respect torthe , Asynchronous:Nodes transmit linear combinations at
basis source packet vectors [3]. We say that node V" at randomly and independently chosen time instants.
time ¢ observes a subspatk (t) C Fy, if I1;(¢) is the space Moreover, we may assume that we have

spanned by the received coding vectors at nbde to timeé | 1oh4| information A central entity knows the subspaces
t. Whendim(II;) = n, nodei has collected a basis of the that all [V'| nodes in the network have observed.

n-dimensional space, and can decode the source information; Local Information: There is no such omniscient entity,

In this paper, we establish a relationship between the 5.4 each nodeonly knows what it has received, its own
network topology and the sub.spaces obs_e'rved by the nqdes subspacdl;.
over tlmg. We are interested in the condlt!ons under Whlqir]na”y we may have atatic view where we take a snapshot
there exists a unique topology corresponding t0 a given $@the network at a given time instantor anon-static view
of [V| observed subspaces. Although the focus of this papgfere we take several snapshots of the network and use the

is on understanding the connection between subspaces gfilsnaces’ evolution to infer topological information.this
network topology from a theoretical point of view, this Worli)aper we will

hashalso l? \;gnety oftﬁpplmat:(onj, fgr example on exammel) restrict our attention to synchronous operation (a simil

such applications in other wor [4]. [ ,]' ) approach can be used for the asynchronous case),
Taking advantage of network coding for active network 5y consiger networks with a single sourc® injecting

monitoring was proposed in [6], [7], where the focus was 5 cyets (similar techniques apply for multiple sources),

on link loss rate inference. Passive inference of link loss 4

rates has also been proposed in [8]. The connection betweeny aqgume global information. Global information is the

maximum information we can hope to get from the

1The authors are with the School of Computer and Communitafioi- ;
ences, EPFL, Lausanne, Switzerland. This work was in papated by the coding vectors propagated through the network. We

Swiss National Science Foundation under award No PP0028B10 focus on local information in a companion paper [4].



Definitions and Notation vectors respectively, uniformly at random frdff}. Then with

Let IT;(t) denote the subspace noddas collected up to Nigh probability
time ¢. For simplicity of notation, we will drog when not 1) the subspaces have the maximum dimension possible,

necessary and udeé;. To compare subspacék andIl;, we i.e., Pr[d; = mi] = 1, Pr[d; = mp] =~ 1, and
will denote 2) the intersection of the subspaces is the minimum possi-
1. the dimension of each subspace as ble Pridi2 = max{d; +ds —n,0}] =~ 1.

4, & dim(IL), Vi Proof: For the first claim, and = 1,2, it holds that
¢ — dim{1l; ), ?,

mifl
2. the dimension of the intersection of two subspaces as Pr(dim(IL) =m;) = [[ Q-4
j=0
dij & dim(IT; N1;), Vi, j, Y

Y

3. the dimension of the joint span of two subspaces as

1-— Z 7 ~1
=0

(see also [2]). To prove the second claim,Ilgt be the orthog-
where by union we mean the common spanibf II;, i.e, onal complement tdl;, i.e., the unique subspace that has zero
IT; UIIL; = spar{Il;, T1;}. Note thatd; + d; = dij + Dij. intersection withlI; and satisfies the properfy; UII{ = F7.

For a set of noded!/ = {ui,...,un}, we will denote as Let alsolU = {ui,...,upm,} andV = {v1,...,0p_m,} be
dy £ dim(IL,, U...UTL,,,). sets of basis vectors fdi, and IT;- respectively, where we
Initially, at time ¢ = 0, the subspaces of all nodes (apart thgsed that, fron{1), II; has dimensiom:;. We can then expand

source) are empty. We define the transition phase to be the yn, randomly selected vectofd = {wy, ..., wn,} that
time during which some of the nodes have started receiviggneratdl, as

packets, while other nodes have not.

_ Defir_1ition 1 Thetransition phase threshold of an algo- _ ZO‘ uj + Z a UJ s i=1,.
rithm, is the first timer at which each edge of the network
has been used at least once.

We say that a network is irsteady state phasé t > Let A be then x my matrix with columns the vectorg(?),
7, and none of the receivers is able to decode the soursed denote byYJ,,, xm,., V(n —mi1)xm, the sub matrices ofl
packets. Throughout this paper, we require that the togologollecting the coefficients with the respecttoandV:
identification occurs aany timeduring the steady state phase

of the network. ~

D;j & dim(IL; UTI;) Vi, j,

Lo,Mma.
3
j=mi1+1

We will consider connected networks, where each node, | | Unny xms
apart from the source, has at least one node (parent) transd = | o) ... q(m2) | =
mitting information to it. If node; hasp; parentsuy, ..., up,, | |
we will denote withf[&}( t) the subspace nodehas received Vin—m1)xma

from parentu; up to timet¢, and with m,)( t) the subspace
node i receives from parent; at exactly time¢. Thus, To calculatel;» = dim(II; NII,), note that each x 1 vector

1 (¢) = 1 (¢ — 1) U L) (1), andIL(t) = U?;lﬂgg ®). in I, N1, (i) since it belongs ifl, it can be expanded with
' ' ' respect talV using a uniquens x 1 coefficient vector, and
Ill. PROPERTIES OFSUBSPACES (i) since it belongs i, the vectora satisfies the equation
A. Subspaces in General Position ~ by
The intuition why looking at subspaces can enable us s a1
to distinguish between topologies, is that randomly chosen . . _ b
subspaces over a large enough finite field tend to lgeireral > : —
position.We say that a set of vectors are in general position (n=ma)xms Qe 0
over ann-dimensional spac&? if every k < n of these (n—m1)x1

vectors are linearly independent [9]. The notion of generthus a belongs in the kernel (null space) of the matrix

position extends over subspaces: two subspaces are sai#}0 ., ),,,. For ¢ > 1 this matrix is full rank with high

be in general position if they are “as far away as possiblgjrobability. As a result,

i.e,, given their dimension, they have the smallest possible ~

intersection [9]. dim(KemelVi,—m,)xms)) = ma — RANKVi—m,)sms)
The following lemmas, that we are going to use in the mo — min(me, n — mq)

remaining of the paper, prove such general position pragsert = max{m; +my —n,0}.0
Lemma 1:Construct the subspaced; and II, of the

n-dimensional spac&?, by choosingm; < n andms < n 2The ~ notation means that this is true with probabilityas ¢ — oo.

Q



Under the conditions of Lemma 1, if for example+ds < n, Algorithm IV.1: INPUT(G = (V, E), S, {m;},n)

the subspaces are disjoint, whiledf < n andds < n they _

are distinct and differ in at least one dimension. for eachi € V' \ {5}
Lemma 2:Let II; andlIl; be subspaces d; with dimen- do 11;(0) = @, di(0) = 0

siond; andd; respectively and intersection of dimensidy. ¢ - 0 )

ConstructIl; by choosingm vectors fromII; uniformly at while min; d;(t) <n

random. ThenPr(IT; C II;) ~ 0, if II; ¢ I1;. for eachi e v

Proof: The probability thatall m vectors are in the if di(t) > mi ,
intersection is do then node: transmits fromlI; (¢)
Lom t—1t+1
Pr(Il, C II;) = (Ci]_;) — (dis—dim for each i € V updatell;(t), d;(t)
which is of orderO(1/q) provided thatd;; < d;. B The following theorem presents necessary and sufficient

conditions that enable us to identify the network topology
using a single snapshot of all node’s subspaces at attime
The following theorem considers the rate at which the Theorem 2:Consider a tree of depth where each edge has
dimension of the subspace a node observes increases. capacityc, and the dissemination algorithm in IV.1. A static
Theorem 1:Consider a synchronous network operation, argiobal view of the network at timg with (D — 1)m <t < %,
randomized network coding over a fiel}. Then each node allows to uniquely determine the tree structure, if and ahly
1 receives innovative packets from the source at a rate that is
upper-bounded by min-c(#, ¢). It receives innovative packets
?r:easiztaed;);?;ttclayai?jugwl(:c;ié?c;nsfziléu:fri(t:?eentrl]ye?ggg IS N ple observations. In a tree there exist a unique. path
: P ={S,i1,...,4,4} from sourceS to nodei. Clearly, in

Proof: The proof uses the algebraic approach in [10] t .
express the transfer matrix between each ricdel the source, gteady-state, for the nodes along the path it holds that
and the Schwartz-Zippel lemma to upper bound the probgbilit I; CIl, C--- C I, CFy = 1. (2)
that randomly chosen values for the linear combinationd le
to a transfer matrix with rank equal to min-¢6té). The
detailed proof is given in [5].

B. Min-cut and Innovative Information

c+1<m. 1)
Proof: The proof is based on the following sim-

?he conditions ont ensure that the network is in steady-
state,i.e., all nodes have a non-empty subspace and no node’s
subspace (apart the source) equals the compleienensional
IV. TREETOPOLOGIES Space. o o
) ) Thus to identify the topology of the tree it is sufficient to
LetG = (V, E) be anetwork thatis a directed tree of dépthshow thatll; ¢ I1; for any j that is not in. But this is what
D, rooted at the source node We will present(i) necessary the condition in (1) ensures. Indeed, consider a node V/

and sufficient conditions under which the tree topology C3R the tree that hag children u,...,ug. If (1) holds, from
be uniquely identified, andi) given that these conditions are| emma 1, therl,,, # II,. for all 4, j if and onlyifm > c+1
satisfied, algorithms that allow us to do so. andg > 1. ’ ’ T m

We first consider trees where each edge has the safgs the condition (1) om: ensures that the subspaces of all
capacity ¢, and thus the min-cut from the source to eacRodes in the tree are distinct during the steady-state phase
node of the tree equals We then briefly discuss the caseppyiously, if two nodes observe exactly the same subspace
of undirected trees. Finally we examine the case where edgg@sime ¢, we can never distinguish between them; ensuring
have different capacities, and thus nodes may have differgfistinct subspaces is clearly necessary for identifigbilit
min-cuts from the source. The simple network in Fig. 1 can help us better understand
why the conditions omz in Theorem 2 are both necessary and
sufficient. Assume that the edges have unit capaeity ().

Assume that each edge of the tree has capagitand Attime ¢t = 1, nodeA receives a vectoy; from the sources.
consider the following dissemination algorithm, also susmmIf node A starts transmitting to node3 andC at timet = 2,
rized* in Algorithm IV.1. Each nodé waits until its subspace then nodes3 andC' will both receive the same vectgy, i.e.,
dimension becomesy;, i.e., d; > m, (for this section we will IIp(2) = II(2) = spaf{y:}. In fact, at all subsequent times,
use a common value:; = m). It then starts transmitting to we will have thatllz(t) = Il (¢t) = 14 (¢t — 1). If instead,
each of its children: random linear combinations per time-node A waits to collectc + 1 = 2 vectors, sayy; and ys,
slot. before starting transmission to nod&sand C, then it will

hold thatllg(t) # I (t), for 2 <t <n+1.

I::agf]eofd epih of atree is the length of the longest path betweenabt and Assume now that Theorem 2 holds. To determine the tree
: 4Though the Aigorithm IV.1 is introduced for trees, it willsal be used for structure, it is sufficient to determine the unique parerchea
general topologies in Section V. node has. From the previous arguments, the parent of hode

A. Common Min-Cut



theorem claims that this is in fact a sufficient condition for
topology identifiability over general graphs.

o Theorem 3:In a synchronous network employing random-
ized network coding oveF,, a sufficient condition to uniquely
identify the topology with high probability ag>> 1, is that

G Hi(t) 7& Hj(t) Vi,7€V, Z#], (3)

Fig. 1. Directed tree with four nodes rooted at the souce for some timet. We can achieve this by collecting global
information at timest andt + 1, i.e, two consecutive static

. . . o ) ~ views of the network.
is the unique nodg such thatll; is the minimum dimension Proof: Assume nodei has thep; parentsP(i) =

subspace that contaiis;. Then, the parent of nodeis the {u Jup, ). Let H(z)( ), H( (t) denote the subspaces
. . . . 3. Pi U1 Up,
hode; such thatj = argmin,.,,, _,,dx. Note that to determine nodez has received from |ts parents up to tine where

the tree topology, we do not need to know exactly whwﬁ _ Upl ()(t) From construction it is clear that
are the node subspaces, but only two “sufficient statisucsA . '
the dimension of each subspade = dim(II;), Vi, and I, (H' 1) € Iy, (2).

the dimension of the intersection of every two subspacesT0 identify the network topology, it is sufficient to decide

di; = dim(II; N I1;), Vi, , as described in Algorithm 1V.2, which nodev € V is the parent that sent the subspﬁfl&f

assuming that the conditions of Theorem 2 hold. to node: for eachy, and thus find the; parents of node
We claim that, provided (3) holds, nodehas as parent the

nodev which at timet has the smallest dimension subspace
Algorithm IV.2: TREE({d;}, {di;}) containingﬁﬁ_)(t + 1). Thus we can uniquely identify the
network topology, by two static views, at timesand¢ + 1,
as Algorithm V.1 describes.

Indeed, let frffj) (t) denote the subspace that node
receives from parentu; at exactly time ¢, that is,

for eachi e V
if di=n,i— S
do elsenodei has parent the nodgwith

]~ 89— A+ 1) =118 (1) U m<,><t +1).
o If & A() (t+1) ¢ I,(¢) for all v € V\{u;}, clearly
B. Directed v.s. Undirected Network 1) ( t+ 1) € I, (t) for aII v € V\{u;}, and we are done.

In a tree with a single source, since new informatiofi Assume now there exist two nodgsand & such that

can only flow from the source to each node along a smgll—é1 C I C M. From Lemma 2, node cann;nt be a child
path, whether the network is directed or undirected makes Abnodet, because then we would have thiat) ¢ 11;, and
difference. In other words, from condition (2), all vectthst as a resuItH“) ¢ II;. Thus it can only be a child of node

a node will send to its predecessor will belong in the subspac [ |
the predecessor already has. Thus Theorem 2 still holds folNote that to identify the network topology, we need to know,
undirected networks with a common min-cut. for all nodesi, the dimension of their observed subspaces at

timet, the dimensionl W 2 dim(f1%¥) (t+1)) for all parentsj

C. Different Min-Cuts

Assume now that the edges of the tree have differefitNodei, and the dimension Of the intersectiontf (¢ + 1)

capacities. As a result, potentially min¢siti) # mincutj, i), With all Tl (t), denoted agl, ., £ 2 dim(M1) (¢ + 1) N g (t)).
for some nodej in the path? that connects nodeé to the Algorithm V.1 uses this information to infer the topology.
sourceS. Note that, under Algorithm IV.1, for the subspaces of
the nodes in the path betweSrandi, condition (2) still holds. - -
However, it is possible that we cannot distinguish between | Algorithm V.1: GEN({d;(t)}. {d,«» }, {d,,»})
nodes at same level with a common parent. For example, if ! !

in the network in Fig. 1, edg&A has unit capacity, while for eachi eV

edgeAB and AC have capacity two. In this case it is easy to if dij=n,i— S

see that there existg such thallg (¢t) = I (t) = a(t — 1), do elsenodei has parent the nodgwith
Vt > to. Clearly in this case, we cannot distinguish between j = argmin_; d.(t)

. . . . . o () :‘i, (%)
nodesB and C with this dissemination protocol. uy”

V. GENERAL TOPOLOGIES

Consider now an arbitrary network topology, correspondi
to a directed graph. An intuition we can get from examinin
tree structures is that, we can distinguish between twol®po sygte that if we identify the parents of each node, we know theply
gies provided all node subspaces are distinct. The follgwimopology.

The sufficient conditions in (3), Theorem 3, may or may not
Id, depending on the network topology and the information



dissemination protocol. Next, we will investigate underatvh The same inequality holds for the dimension of
conditions there exist valueign;} for the simple dissemina- II;(to +¢1 +1). Thus for¢ — [ > ¢, we cannot have
tion algorithm IV.1 so that (3) holds, and the network togylo IIpe(t — 1) = II;(¢t) and IIpe(t — 1) = IL;(¢). Using Lemma
is identifiable. 3 we are done. ]
Lemma 3:Consider two arbitrary nodes and j, where Intuitively, what the previous theorems tell us is that, if
P(i) = {u1,...,up,} and P(j) = {v1,...,vp, } are the par- for a node: there exists a path that does not belong in any
ents ofi and; respectively. Leflp;) (t—1) =U;" 1L, (t — 1) cut between the source and another ngdethen nodesi
and Tlp(t — 1) Upe 1L, (t — 1). The condition and j will definitely have distinct subspaces. The only case
Hpey(t —1) # pgy(t —1) is sufficient to guarantee thatwhere nodes and;j may have the same subspace is, if they
I1;(¢) # I1,(2). have a common set of parents, a common cut. Even then,
Proof: Let us assume thdil;(¢t) = IL;(t) = II. This they would need both of them to receive all the innovative
implies that ifr;(¢) and;(¢) are subspaces collected at timénformation that flows through the common cut at the same
t then, time. Note that the condition of Theorem 4 are also necessary
for identifiability for the special case of tree topologisach
mi(t) UIL(t — 1) as the topology in Fig. 1. We can develop dissemination
From construction]I;(t — 1) C Ip) (t — 1) and m;(t) C techniques for general topologies that satisfy the sufficie
Ip) (t —1) so we havdl C Ip) (t —1). The same is true conditions given in Theorem 4 by using a decentralized rate
for node j,I1 C I p(;) (t — 1). control strategy [5]. This can be done with almost no affect
On the other hand, using Lemma 2, since we randomy the dissemination rate.
choser;(t) from IIp(; (¢ — 1) and sincer;(t) is a subspace
of TI, we should have thallp;(t — 1) C II, and similarly
thatITp ;) (t — 1) C II. We conclude that

Wj(t) UHj(lf— ].) =1II.

VI. CONCLUSIONS

In this paper we have shown that (for a class of graphs)
one could design network coding algorithms which reveal
topological structure of the graph while not affecting the
dissemination rates. This connection between subspaces of
network coded packets and network properties could be usefu
é'lp other contexts as well. We have only considered the case
where the identifiability occurs any timeduring the steady
state, and sufficient conditions for this. If one relaxes thi
has further prior information about the network topologyeo

which gives us the result.

Now consider the parents of nodésnd j as supernodes
P(i) andP(35). Using a similar argument we can conclude th
the parents ofP(i) and P(j), denoted asP?(i) and P2(j),
satisfy

IIp2 ;) (t—2)= Hp2(j)(t —2)=1I,

wherell,; (t) = II;(¢) = II, and dim{II) = d < n. Continuing
this procedure, and including at least one new node in the
set of parents at each step, we will at some stegither [1]
have P‘(i) include the source nodé&, which leads to a 2]
contradiction since the dimension of the subspdee,;) (t—¢)
is d < n (similarly if P*(j) includes the sources), or
that P‘(i) = P*(j). To resolve this last case, we evoke th&”

following theorem. [4]

Theorem 4:Suppose two arbitrary nodesand j have a
common set of parent8’ = P‘(i) = P’(j) at a levell. The 5,
following conditions are sufficient to let exist sonje:;} for [6]
the Algorithm IV.1 such that (3) will be satisfiéd 7
¢; = min-cu P, i) < min-cut(S, P*) = c,, -

¢; = min-cuf P*, j) < min-cu(S, P*) = ¢,.

Proof: Let us assume thaty is the first time that
dim(Ilpe) > ¢, + 1 and the time after whichP‘ receives
innovative packets at a rate ef. Assume thatP’ starts
transmission aftety. For¢; time slots later we can write

9]

dim(sz (to + tl)) > tlcp +cp + 1.
For node:i we can also write
dim(Hi(to +t + Z)) < (tl + 1)67 < tlcp + Cp.

6Note that ifc; = min-cut(S, ), ¢; = min{é;, cp}.

could also design other schemes [5].
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