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Abstract—We consider multisource non-coherent network cod-  « For subspaces; andm,, m; @79 is the smallest subspace

ing, where multiple sources send information to one or mulfple that contains bothr; andn,, namely,

receivers. We prove that this is equivalent to a “subspace”

channel, that takes subspaces as inputs and outputs. We then T D T = {111 + v2|v1 € M,V € 7r2}.

show that the rate of each individual receiver is upper bouneéd as

8;(T — 51 —d2), where §; is what we define to be the “dominating” o For a matrixz, (z) is the subspace spanned by rows of
dimension in the subspace codebook of sourcg and T is the .

“coherence” time of the network. N . .
Definition 1: Grassmannian and Gaussian numb&he

|. INTRODUCTION Grassmanniatir(7', d), is the set of alld-dimensional sub-

We consider a network operating with network codin Sg‘;?;? of theT-dimensional space over a finite field,,

where intermediate nodes send linear combinations, chosen
uniformly at random, of their incoming packets. We are Gr(T,d), £ {r C IFqT : dim(7) = d}. (1)
interested in the case where more than one sources insert o ] )

information in the network, destined to one or more recaiver! € cardinality ofGr(T’, d), is the Gaussian number, namely,

This |s_often the case in wwelegs networks,.for exgmplemerl G(T,d)y 2 |Gr(T, d)y| = ¢ T,
operations such as topology discovery, or in applicatiath s
as sensor networks. Definition 2: We defineS(T', m), to be the set (sphere) of

We assume that neither the sources nor the receivers hallesubspaces of dimension at mostin the 7-dimensional
knowledge of the operations the intermediate nodes perfoﬁmaceF;‘f, namely
(noncoherent communication). For this model, and the case m
of a single source, use of subspace coding was proposed i@(ﬂ m), = U Gr(T,m), ={r C IE‘qT sdim(7w) < m}.
[1], [3], and capacity bounds were investigated in [4], [F], =0
[8]. Algebraic code constructions for multiple sources eve
recently investigated in [2].

In this paper we derive the (asymptotic) capacity region
for the case of two sources. We show that this region forms
a polytope with a finite number of corner points. We also
provide a simple achievability scheme. Definition 3: We denote byy(T,n,m;), the number of

The paper is organized as follows. Section Il introduces odifferentn x I" matrices with elements in a field,, such that
notation, and Section Il our model and main results. Sactio their rows span a specific subspacg < Fg of dimension
presents an outer bound on the achievable rates, and SBétiofl < d < min(n, 7).
presents an achievability scheme that achieves the outeidbo  For simplicity, we will drop the subscript in the previous

definitions.

"The cardinality ofS(T', m), equals

S(T,d)g = [S(T,d)g| = ¢,
d=0

II. NOTATION AND DEFINITIONS

We here introduce the notation used in this paper. We use: I1l. MODEL AND MAIN RESULTS

« a = b for a andb functions of the size of a finite field, e consider a network with two transmitters (sources), a
, log, a . . . single receiver, and operation in timeslots (or generations,
to imply that —2—- goes to one as the size of the finit€ . : .
C logg b = . in the network coding literature). In each timeslot, souice
field increases (similarly fon <b). _ i = 1,2, insertsm; packets in the network, each of length
o For subspaces; andm,, m C w2 implies thatr; is @ and with elements over a finite fielt},. The receiver observes
subspace ofrs.

1From the multicasting theorem in network coding, the sanselte hold
This work was supported by the Swiss National Science Fdiomdaward for the case of multiple receivers interested in the infdiomafrom both
PP002-110483, and by the EU project N-CRAVE FP7 ICT-2005252. sources.



n uniform at random combinations of these packets. Following o—
[7], [8], we model the network operation at timeslbgs a my =4

multiple access channel (MAC): 31 (0,3) ) m
1, 02) = y o

Y[¢] = Hi[0) X1 [€] + Ha[0) X2[4]. ) ----..-.__i, ------ I T=14 |

EachH;, i = 1,2, is ann x m; matrix, chosen uniformly at
random over all possible matrices of appropriate dimerssion
and i.i.d over different blocks. The packets that the sairce I
insert in the network and the receiver observes are cotlecte o
as rows of matrices(;, X, andY’, respectively. Equivalently,
each X; is a matrix chosen fromY; £ IFZZ”T?XT, the input
alphabet of thei-th source, and” is a matrix from the set 0
y 4 ]FQXT. We can think ofT, the packet length, as the :
coherence time of the network.

For the channel in (2), the transition probabilily x, x, Fig. 1.

The MAC regionR* for parametersn; = 4, ma = 3, n = 3,

can be written as [7] T = 14.
Py, %, %, (ylw1, v2)
B g~ dim((z1)@(w2)) (y) C (z1) & (z2), 3 IV. ACHIEVABILITY SCHEME
10 otherwise (3) ; ; ; : ; -
In this section we illustrate a simple achievability scheme

Note that for the corner points of the rate region defined in Theorem 1.
It is clear that other points in the rate region can be achieve
dim({x1)®(z2))=dim({x1))+dim({z2))—dim({x1) N (z2)). using a time-sharing argument.

] ] _ _ _ For given(dy, ds2) € D*, define the following codebooks.
Our first result is that this channel is equivalent to a

“subspace” channel, that has subspaces as inputs and mutpug alixyx, =
Lemma 1: The MAC channel,,_ s ac described by (3) is te 141

equivalent to the MAC channél_ ;4 with input alphabets

X; = S(T,m;), for i = 1,2, output alphabey = S(T,n), [

and transition probability

Id1 ><d1 | Od1 ><d2 | Ul
0(mlfd1)><d1 | O(mlfdl)xdg | O(mlfdl)X(delfdg)

)

U1 E Fdlx(ledg)}
PI‘(Y:7Ty|X1:7T1,X2:7T2) 4

_ d}(Ta n, ﬂ.y)qfn dim(m B7a) Ty E 77.1 P o, and
0 otherwise

(4) égé{<X2):X2:

The main contribution of this work is to derive the capacity { Odoxa, | Tagxar | U,

region of this channel. 0(ms—da)xdy | O(ma—da)xds | O(ma—da)x(T—di—ds) |
. Theorem 1:The capacity region of the channel in (4) for U, € Flax(T—di—da)

% > max(my +mg,n) is given by 1 q :

R* £ convex hull U R(dy,ds), Transmitting messages from the codebooks, we have

(d1,d2)eD*
Y =H: X1+ Hx X5

SUCh that = [ ,Hl | E[Q | E[lUl +E[2U2 }7

A .
- : i< 0 ) ) = 4 ) T . H
Ridy, d2) = {(Fr, Ro) : By < Ri(da, o), 0= 1,2} whereH; is the firstd; columns ofH;. Therefore, decoding at

where R;(d, d) 2 di(T — dy — d) for i = 1,2, and the receiver would be just construction©f; andU; having
H1U; + HyUy, Hy, and Hs. Sinced; + dz < n, the matrix
D* 2 {(dy,dy) : 0<d; <min(n,m;), [H, Hs] is full-rank with high probability, and therefore the

0 < dy +dy < min(n,m; +ms)}. (5) decoderis able to decodé; andU,.
Note that the achievability scheme is effectively the cgdin
vectors approach [9]. This indicates that f-§r> max(mq +
The rate regiorR* is shown in Fig. 1 for a particular choicems, n) andg large enough, the subspace coding and the coding
of parameters. In the rest of the paper we prove Theorem tectors approach achieve the same rate.



V. OUTER BOUND ON THEADMISSIBLE RATE REGION Definition 6: For a setX < S(T,m), we denote the
projection of X onto the set ofl-dimensional subspaces by

The goal of this section is to show that the rate p&ir, R»)
Formally,

of two users over the channel described by (2) cannot B d)-
outside the regiorR*. We will give our proof in three steps.
First, we find two upper bounds foR* and then show that X(d) £ XNGr(T,d) = {X € X :dim(X) = d}.
their intersection is in fact a subset Bf*.

Let R, be the optimal rate region for the MAC channel To communicate, each of our sources is going to use as
(2). Then, by letting two transmitters to cooperate and gisiralphabet a set of subspaces. For two such sets of subspaces
the result of [8] for the non-coherent single source chamel X; and X, we can construct a table wittk; | rows and|A5|

have the following lemma. columns, each row (column) corresponding to one subspace
Lemma 2: We haveRqpt € Reoop Where (0) in Xy (X5). A coloring for this table is an assignment of
A colors to the cells of the table using a function caf; x Xy —
Reoop = {(R1, R2) + Ri+ R < k(T — k)}, N such that cdla, b) = col(a’, v) if and only if a®b = o’ BV'.
andk = min(m; + ma,n). Theorem 2:For each uniquely decodable cadelefined on

In the rest of this section we will focus to derive anothegome input alphabet; x X; for a multiple access channel and
upper bound which is denoted B¥..;. This bound is based for each time slot, there exist integer numbefs< d;(t) <
on the number of messages per channel use that each userigaguch that
communicate over the multiple access channel provided that
n is large enough. It is clear that this assumption does not Ci[t]] < ¢ WT=01)=02() - —q 2 (10)
restrict the rate region, because the more number of packets
the receiver receives, the better it can decode the messagesere C;[t] denotes the restriction of the codg to its ¢-th

For each time slat, letC;[t] be the codebook used by sourceomponent.

i. For a single source scenario, we showed in [8] that we can proof: We present the proof for a given fixed but

use the setS(T’,m) as our input alphabet for all time slots,sometimes drop the time index for brevity. For a fixedet
and have the receiver successfully decode the sent messagese thedominatingdimension in the sef;, i.e.,

Thus the user can communicaté€l’, m) distinct messages.
For the multi-source scenarid;[t] is more restricted. This is
because the transition probability of the chanfel x, x, is

of the form Py |x, ¢ x,. Thus, if (X;,X2) € A1 x & and o ) ) )
(X!, X1) € Xy x X, satisfy X; & X, = X! & X}, then the Where, from definition 64 (d) contains all the d-dimensional

§; = arg max | X (d)],

receiver cannot distinguish between them. subspaces in the codebodk. It is clear that

In the following we will bound the number of messages for
each receiver in this case. In order to do so, we start with || = Z | (d)] < my|X;(6;)] = |Xi(d5)]. (11)
some useful definitions and lemmas. The proof of the lemmas d

is presented in the Appendix. ]
Definition 4: For a fixedm; € Gr(T,d;), we define By removing all subspaces froai, (X-) except the ones that
have dimensiod; (d2) we loose only a constant factor in the

N (m1,d2, ) £ {73 € Gr(T,ds) : dim(m; Nm2) = a}. (6) codebook size. Therefore the loss in the rate values would
be negligible as; grows. Consider the table constructed for
b X1(61) and X5(d2). Let mp € Xy1(61) be ad;-dimensional
y subspace, and consider the corresponding row of the table.
n(dy,da, @) = [N (71, da, )| = (- +(da—e)(T—dz) (7)  We further partition the columns of the table with respect to
n n m into [J™21%) x, (1), 65, @), where
1 a=0 2 1,02, y

Lemma 3: The cardinality of the sel (71, ds, @) is given

Note that sincd N (m,ds, )| depends onr; only through
dy = dim(m ), we have replaced it by;. X 5 A € X(8) - di n —al. (12
Definition 5: For a fixed -y € Gr(7T,d;) and w2 € 2(m, 02, @) = {m 2(02) : dim(m Ama) = o} (12)

Gr(T' dz), we define We useK (m,02) and K (71, d2, ) to denote the number of

A(my,m) 2 {rh € Gr(T,dy) : my &y =m ®mo}. (8) different colors in the row corresponds+g and its intersec-
tion with X (71, d2, ), respectively. Note thats(rq, d2, @)
Lemma 4: The cardinality of the seti(m1,72) is given by has at most(d;, 52, ) elements, where each color appears
. doldi—a a(01, 02, ) times. Therefore the number of different colors in
aldr, dz, @) = |A(m, m2)| = g=(H 7, ©) th(is partiti)on can be upper bounded as
wherea = dim(m; N m2). Note that sincd A(my, m2)| only
depends on the dimension of two subspaces and their inter—K

< n(611627a) - q(62—(¥)(T—5] —62+o¢). (13)
section, we can express it as a functiondef ds, anda. -

(m, 82,) a(61, 02, )



As a result, Lemma 5: The set of corner points d® .., is the set of all
rate pairs of the form( Ry, Ry) = (Ri(dy,dz), Ra(d1,d2)),

min (1,82

K(m,689) < Z )K(m,ég,a) for some(di, d2) € D, where
mi:(gfféz) D = {(0,my), (1,my), ..., (m1,ms),
< Z g(# =) (T—b61=b>-+a) (my,mg —1),...,(m1, 1), (m1,0)}.
=0 Proof: We will show that any point
= gMAXo<a<min(sy,by) (02-0) (T—01=0>+a) (R1(dy,d2), Ra(dy,d2)) is dominated by the segment
= g%2(T—61-02) connecting (Ri(di + 1,ds),Ra(dy + 1,dy)) and

(R1(d1,da 4+ 1), Ra(d1,d2 + 1)). In order to show that,

where the last asymptotic equality holds sifice> 2(5; +d,) We have to prove that there exists some [0, 1], such that
: . . oo
;r;g(g:eg;(ponent is a decreasing functiomofor 0 < o < Ra(di,ds) < ARi(dy + 1, da) + (1 — N Ri(dy, do + 1),
This argument holds for each choice of. This means if ~ F2(d1;d2) < ARy(dy +1,d2) + (1 = A)Ra(dy, dz + 1).

userl transmits &, -dimensional subspace, the receiver cannot (14)
distinguish more thag®2("~9:=%2) different symbols. Thus the After a little simplification, (14) can be rewritten as
number of decodable messages u3etan communicate is
upper bounded by%>(T=91-%2)  The same argument holds AT —dy —dz = 1] < d,

for a fixed columnm, € X, which yields an upper bound to (1 =NT —dy —dy — 1] < da,

the number of communicated messageg®as’ % —%)., m
From Theorem 2 we have the following corollary. or dy A< T—-1—dy — 2d2.
Corollary 1: We haveRqpt C Reol Where T—-1—dy —ds T—1—d; —dy

The last two inequalities can be satisfied for some choick of

a
Reor & convex hull | R(di, da), if and only if d; + do < (T — 1)/2. Therefore any(d;,ds) €

(d1,d2)€Dcor Deor With di < mq, do < ma, andd; + ds < (T — 1)/2,
cannot form a corner point, because otherwige + 1, d»)
and Do £ {(dy,ds) : 0<d; <my}. and(dy, dz>+1) also belong td.,. Eliminating such(d, dz)

. o from D1, Wwe getD.
Proof: Using Theorem 2, it is clear that the number of ;¢ 5154 easy to show that all of the rate pairs correspandin
de}god%ble pairs for each time instance is upper bogndedtBy(dI’dQ) € D are on the boundary @..,. This can be done
(¢, q") for some (di,d>) € Deor. Coding overL time by comparing the slope of the connecting segment for two

instance can only provide rates which are convex combingsnsecytive points (according to the order they are apgeare
tions (time-sharing) of suchR;, R»), for different values of in 5) The slopes are

(di1,d2) used for different time slots. Therefore the rate pair
cannot be outside of the region defined in the corollarym  S{(Ri(t,m2), Ra(t,m2)); (Ri(t 4 1,ms), Ra(t 4 1,ms))}

By Lemma 2 and Corollary 1 we have already shown that _ ma for 0 < ¢ < my
Ropt € Reoop and Ropy € Reol, respectively. Therefore T—-2t—mo—1 - -
Ropt € Reoop N Reol. We have shown the achievability of S{(R1(m1,t), Ra(ma,t)); (Ri(ma,t — 1), Ro(mq,t — 1))}
R* in Section 1V, so it only remains to prove the following T—2t—my—1
theorem. = for1 <t <ms.

my
Theorem 3:We haveRcoop M Reot & R Itis easy to check that all the slopes are negative and theey ar

tPrtcr)]oft: Let (Rtlr’]RQ) < RCOFIP IT Reol be t"?‘ corner pmpt 4 a decreasing order. Therefore, no point in theBatan be
(note that since the convex hull is operating over a finitg "= point. -

number of sets, we can still talk about corner points). It Is Lemma 6: If Reoi & Reoop, then any intersecting point of

clear that(R;, Ro) is either a corner point oRR.., or is a . . N
) b ! = k(T — k) with the bound o t
middle point on the boundaries ®., and Reoop. FOr the t];:;é? ( ) wi € boundary 0R is a pointin

former case, being a corner point &..;, implies that it is B
of the form (Ry, Re) = (Ri(d1,ds), R2(d1,ds)), for some DU{(m; —1,0),...,(0,0),(0,1),...,(0,mz — 1)}.

(d1,d2) € Deor. AlSO (R, F2) € Reoop implies Proof: Note thatReo ¢ Reoop implies my + mg > n.

Ry + Ry = (dy + d2)(T — (dy + d2)) < k(T — k), SinceR.. is a convex region, its boundary intersect with the
line Ry + Ro = n(T — n) in exactly two points (it cannot
and therefored, + dy < k, since f(z) £ x(T — x) is an pe only one point, otherwise it would be inside B.o0p)-
increasing function for: € (0,7'/2). Hence(di1,d2) € D*, |t is clear that the two corner points ®.,, corresponding
and (Ry, R2) € R*. We claim that the second case nevagp (d;,d,) = ((n — ms)*, min(ms,n)) and (di,ds) =
happens. The proof is given in Lemma 5 and Lemma @  (min(my,n), (n—m4)") lie on the lineRy + Ry = n(T —n).



Therefore this line cannot intersect with the boundarfRef, front of summation ovey and write

in any other point. [ | I atac (X1, Xo: V) =
m— 1,2, -
APPENDIX = Z Px, (m1)Px, (m2) Z
. . T1EX], T2 EXS dyZO
Proof of Lemma 1:We know that to find the rate region ~
of the C,_nac channel we should find out the convex hull Z w(T,n,dy)IBy\X . (Y], ) log, Pylxl)iz (ylm, m2)
of union of the following sets of inequalities —y e Py (y)
1 dim(7my)=d,
Ri < Zln-mac(XiY|Xie), =12, (15) for somey : (y) = m,. Defining Py |x, x, (my|m,m2) =
1 di P , wherer, = we have
Rt = M et ) ey VA Prix vl wo) wherer, = (y)
Ly—mac (X1, X23Y) =
for all ﬁxlxz(xl,,fg) = ﬁXl (,Tl)ﬁxz(,fg). _ Z PY\XlXQ(ylﬂ—l,TQ) 1og2 PY\X1X2(7Ty|77177TZ)

Let us write I arac(X1,X2;Y) for the channel Py (my)
Cr—mac- We will show that it is equal to the same quantity:

for that Cy — M AC channel.

mEX, T2 EX Ty EY
Is_pac(X1, X201 Y).

A similar arguments shows the equality between mutual in-

I—mac(X:, X3 Y) = formation of the two channel§,,_r;ac andCs_pjac. ®
B 5 5 5 Proof of Lemma 3: There areG(d;,a) = ¢*d1—)
- Z - [ Y12 X2 (U121, 2) Px, (21) P, (22) different choices for the intersection af andm,. We have
T1EX,T2EX? to choosed, — « basis vectors for the rest of the subspace.
vey _ This can be done in
P o
log, Y\X1{2(y|$1,$2) . (qT _ qdl) (qT _ qd1+1) (qT _ qd1+d2 a 1)
Pr(y) (g% —q*) (¢% — q*1) ... (¢ — q®271)
~ - - q(dzfa)(T*dz)
We know thatPy | x, x, (y|71, 72) = Py |x, x, (y|7, 25) where
(x;) = (a}) for i = 1,2. So with an abuse of notation, we carways. _ u
write the mutual information as Proof of Lemma 4:Definer = m @7, wheredim(7) =
dim(my) + dim(my) — dim(m; Nmo) = dy +do — e 2 d. The
I mac(X1, X0 Y) = proof of this lemma is similar to that of Lemma 3, unless we
B 7 p P can only choose the lagh — a basis vectors fromr instead
- Z { v 1x: X, (Y1, m2) Px, (1) P, (2) of FI'. Therefore replacing” in Lemma 3 withd, we have
m1EX], T EX
yey a(ﬂ'l,ﬂ'z) - qa(d1—a)+(d2—a)(d—d2) _ qdz(d1—a)' (17)
Py x,x, (ylm1, m2) -
2 ~ )
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