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Joint Identity-Message Coding
L. Keller, M. Jafari Siavoshani, C. Fragouli, K. Argyraki, and S.Diggavi

Abstract—In a significant class of sensor-network applications,
the identities of the reporting sensors constitute the bulk of
the communicated data, whereas the message itself can be as
small as a single bit—for instance, in many cases, sensors are
used to detect whether and where a certain interesting condition
occurred, or to track incremental environmental changes at fixed
locations. In such scenarios, the traditional network-protocol
paradigm of separately specifying the source identity and the
message in distinct fields leads to inefficient communication.

This work addresses the question of how communication
should happen in such identity-aware sensor networks. We cal-
culate theoretical performance bounds for this type of communi-
cation, where “performance” refers to the number of transmitted
bits. We propose a communication protocol, where the identity
and message of each source are specified jointly using subspace
coding. We show through analysis and simulation that our
protocol’s performance is close to optimal and compare it to
the performance of a traditional protocol, where identity and
message are specified separately.

Index Terms—Wireless sensor networks, Identity-aware sen-
sors networks, Network coding, Energy efficiency

I. I NTRODUCTION

In traditional network protocols, each packet carries its
source identity in a dedicated header field, separately from
the communicated message, which constitutes the packet’s
payload. To increase their information rate, several protocols
use encoding or compression techniques that look to minimize
the size of the message; to the best of our knowledge, none
of these techniques consider the source identity as part of
the data that needs to be encoded or compressed—and for
good reasons: In the typical communication scenarios where
encoding or compression makes sense, the message constitutes
the bulk of the communicated data, whereas the source-identity
overhead is relatively insignificant.

The situation is reversed in wireless sensor networks that
monitor the evolution of an environmental variable over time
and space: Sensors are often used to trackwhetherandwherea
certain condition occurs,e.g., temperature exceeds a threshold,
a perimeter is violated, soil or water is contaminated; in other
cases, they are used to track incremental changes at fixed
locations,e.g., the evolution of snow height at mountain peaks
for avalanche prediction or seismic activity for earthquake
prediction. In such scenarios, it makes sense to associate each
sensor with a fixed location and have it report, periodically,
its identity and measurement to a collecting sink; assuminga
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network of tens or hundreds of nodes, the identities of the re-
porting nodes now become the bulk of the communicated data,
whereas the message itself (i.e., each reported measurement)
can be as small as a single bit.

We use the termidentity-aware sensor networkto describe
such a paradigm (where each sensor periodically communi-
cates to the sink its identity plus a small message). This is
in contrast to the identity-unaware sensor networks usually
encountered in the literature, where the sink collects functions
of the histogram of the sensor measurements, such as the
average or maximum temperature measured by all the sensors.

In an identity-aware sensor network, every piece of in-
formation (identity and message) produced by each sensor
must reach the sink. This affects energy consumption in two
ways. First, there is no room for reducing the amount of
transmitted traffic (and, hence, overall energy consumption)
by combining multiple messages into one value (e.g., their
sum), as typically proposed for identity-unaware networks.
Second, the “busiest” nodes in the network (i.e., those that
are located close to the sink and act as relays for the rest
of the network) have to forward significantly more traffic than
nodes in the network periphery. For sensor networks operating
with renewable energy [1], this raises the amount of per-sensor
energy required to run the network for a given amount of
time, making it harder to charge the network through natural
resources.

With this work, we address the question of how communi-
cation should happen in identity-aware sensor networks. Our
main observation is that sensor identities are a special kind of
data: for a fixed node, the identity is a constant number that
does not change with every transmission, in contrast to the
messages that do. Thus, we expect to develop a more efficient
communication protocol by treating identities specially rather
than treating them like messages, and we show that this is
indeed the case.

Our contribution is a new, easy-to-implement communica-
tion protocol, where the identity and message of each source
are jointly specified using subspace coding. To evaluate our
protocol, we compute theoretical performance bounds for
identity-aware communication, where we consider two per-
formance metrics:average transmissionscapture the average
number of bits that are transmitted by any node in the network,
while busiest-node transmissionscapture the number of bits
that are transmitted by the “busiest” node,i.e., the one that has
to transmit the most bits. We show that the performance of our
protocol is close to the optimal bounds. We also compare it to
the performance of a traditional protocol, where the identity
and message of each source are specified in separate fields.
We show that, while the traditional protocol performs slightly
better in terms of average transmissions, our protocol performs
significantly better in terms of busiest-node transmissions, and
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this advantage increases with the number of nodes in the
network.

The basic idea behind our protocol is to assign a different
codebook to each sensor and let each sensor implicitly convey
its identity through its choice of codebook. We realize this
using subspace encoding: each reporting sensor communicates
its identity by generating a set of vectors that represent a
distinct subspace—distinct from the subspaces generated byall
other sensors. By combining incoming vectors, intermediate
nodes essentially produce different (compact) representations
of the subspaces generated by the reporting sensors. We exploit
the invariance properties of subspaces, such that neither sen-
sors nor sink need any knowledge of either network topology
or intermediate-node operations in order to generate their
vectors or (in the sink’s case) decode them.

The rest of the paper is organized as follows. Section II
presents examples of identity-aware sensor networks and illus-
trates the main idea behind our protocol. Section III describes
our protocol in detail. Section IV presents our theoretical
performance analysis, while Section V presents experimental
results obtained through the TOSSIM simulator [2]. SectionVI
discusses related work, and Section VII concludes the paper.

II. M OTIVATION AND SETUP

We consider sensor networks where each node commu-
nicates its identity and a small (relatively to the identity)
message to a collecting sink. This is different from the typical
scenarios discussed and analyzed in the literature, where
sensor networks are used to compute aggregate statistics (e.g.,
the average temperature in a building) that do not require
associating each message with a specific sensor. Given our
departure from the commonly used paradigm, to motivate our
work, we first discuss a few applications where sensor identity
forms the bulk of the communicated data (Section II-A). Then
we illustrate the main idea behind our protocol (Section II-B)
and introduce our network model (Section II-C).

A. Applications

In all the applications we consider, the sensors are used to
periodically reconstruct thespatial fieldof a physical quantity,
i.e., the variation of that quantity as a function of space [3].

Differential Updates:In many cases of environmental mon-
itoring, to avoid unpleasant surprises, we need to choose
the measurement frequency such that the spatial field under
measurement changes relatively slowly. For instance, when
monitoring the level of snow on a mountain surface for
avalanche prediction, it makes sense to measure frequently
enough, such that, at any location, the snow level never
changes by more than2-4 centimeters between measurements.
In such scenarios, each sensor needs to communicate only
the difference of its new measurement from the last one,
together with its identity. Assuming networks of tens or
hundreds of nodes, the identity may require one or two bytes,
while the update itself needs only a few bits [3]. Many such
examples also arise in security applications, such as the indoor
deployment of a sensor network in an office building, to
measure atmosphere contamination.

Sink
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[10000000]
S2

[00000000]

S3[00100000]

S4[00000000]

S5[00001000]

S6[00000100]
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[00000010]

S8

[00000000]

[10101110]

Fig. 1. SourcesS1, . . . , S8 send their identity and a1-bit message to the
sink A through a relay nodeB.

Spatial Correlation: In other cases, the spatial field under
measurementat a given timevaries smoothly over space—this
is the case, for instance, with temperature and pressure [3],
[4]. We can leverage such smooth variation by having a set
of densely deployed sensors communicate only few bits of
information, then use techniques like distributed source coding
[5] to reconstruct the entire spatial field. This idea takes
advantage of “oversampling” of the sensor field, and collecting
coarse information from each sensor.

Multi-stage Collection: Sometimes we are interested in
reconstructing only a few “interesting” regions,e.g., examine
only the areas where the measurements suggest that there
is potential for an avalanche. In such cases, it makes sense
to collect data in stages: in the first stage, each sensor
communicates its identity along with few bits of information
(just enough to get a coarse representation of the field); if
something interesting is revealed, the sink queries the relevant
sensors for more information in the second stage [6]. In many
practical scenarios, it is enough for each sensor to send a
single bit of information during the first stage—signaling, for
instance, whether a threshold was reached, a perimeter was
violated, or an animal was sighted.

B. Basic Idea: Representation of Identities

In the context of the applications discussed above, the
traditional approach of keeping the source identity and the
message in separate fields leads to inefficient communication.
We now illustrate this inefficiency with a simple example and
introduce the idea of joint identity-message coding.

Consider the network of Figure 1, where8 source nodes
need to communicate information to a sink nodeA via a
relay nodeB. Suppose each sourceSi, i = 1, . . . , 8, needs
to communicate its identity and a1-bit message.

Consider the following communication protocol, which we
will call “aggregation”: Each source creates a packet that
contains3 bits specifying its identity and1 bit specifying its
message, and sends this to the intermediate nodeB. To relay
this information toA, B could naively forward the8 packets,
which would result in8 packet transmissions over linkBA; to
avoid this overhead,B combines the8×4 identity and message
bits into a single packet. This communication protocol can be
easily generalized to work on an arbitrary tree: each source
sends out a packet with its identity and message specified
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in separate fields; intermediate nodes aggregate and forward
incoming packets toward the sink.

Aggregation results in unequal transmission load over the
different network links, with the heavier burden placed on the
links closer to the sink. In our example, it results in4 bits of
information being transmitted over each linkSiB as opposed
to 32 bits over linkBA.

Now consider the following alternative communication pro-
tocol, which we will call “coding”: Each sourceSi sends
out an 8-bit packet with its message encoded in biti and
all other bits set to0; this is the simplest example of using
a “code” to represent the identity of a node along with its
message. NodeB just XORs all incoming packets and sends
the resulting8-bit packet toA, as depicted in Figure 1. Node
A can interpret its received message with the understanding
that positioni corresponds to the message sent by nodeSi.
Again, this protocol can be easily generalized to work on an
arbitrary tree: sourceSi sends out a packet with its message
specified at biti and all other bits set to0; each intermediate
nodeXORs all incoming packets and forwards the one resulting
packet toward the sink.

With coding, each node forwards thesamenumber of bits,
i.e., communication overhead is evenly distributed across the
network, alleviating the problem of depleting the battery of
the nodes located close to the sink. As a result, compared to
aggregation, coding leads to more efficient communication on
link BA (8 bits instead of32); the price we pay is a small
decrease in efficiency on theSiB links, which now have to
carry8 (rather than4) bits of data. Note that, with coding, node
B is not required to understand and process the contents of
incoming packets; information is always encoded at its source
and decoded at the sink, while each node is oblivious to the
codes used by other nodes.

More formally, we propose that each source employs a
different codebook, i.e., a different mapping of messages to
packets; the sink knows the codebook used by each source
and, hence, can determine who sent what,i.e., the sender
implicitly communicates its identity through its choice of
codebook. This approach agrees with the insight we have from
information theory: the scenario of Figure 1 is reminiscentof
the classic multiple-access channel problem, where multiple
users simultaneously transmit to a single receiver over a
common channel; it is well known that the users do not have
to explicitly specify their identities, as long as they choose
distinct enough codebooks that can be disambiguated at the
receiver ([7], Chapter 14).

The simple coding we described here is a special case
of joint identity-message coding, which is fully describedin
Section III.

C. Network Model

We consider a network ofN sensor nodes and a sink, which
operates in rounds. In each round, some or all of the nodes act
as “active sources.” When nodei acts as an active source, it
generates exactly one tupleti, which has form〈i,mi〉, wherei
is the identity of the node andmi is a message that takes values
from a setMi. For simplicity, we assume that all the setsMi

have the same cardinality, namelyM , |Mi| = M,∀i.

We assume that the nodes build and maintain a routing tree1

rooted at the sink,e.g., by using the Collection Tree Protocol
(CTP) [8]. The tree does not need to be static, but may adapt
dynamically to network conditions. So, when we say that a
node “forwards a packet toward the sink,” we mean that it
sends the packet to its parent on the routing tree.

During each round, each nodei that acts as an active source
maps its tupleti to one or more packets (according to the
communication protocol used) and forwards these toward the
sink. Each node that has children acts as a relay: it waits
to receive all the packets sent by its children, processes them
(according to the communication protocol used), and generates
new packets to forward toward the sink. So, the set of packets
sent out by each node contains all the tuples generated by the
node and the node’s descendants. We will refer to this set of
tuples as the “tuple aggregate”A observed by the node, and
we will denote byI(A) the set of sources whose tuples are
contained in tuple aggregateA.

As a communication protocol, the network uses either
aggregationor coding.

1) The Aggregation Protocol:Each tupleti is mapped to
⌈log2 N⌉ + ⌈log2 M⌉ bits. The first⌈log2 N⌉ bits encode the
identity of the source, while the remaining⌈log2 M⌉ bits
encode the message. During each round, each node sends
exactly one packet: A node that has no children sends a packet
that includes its tuple. A node with children waits to receive
all the tuples sent by its children, concatenates them into a
single packet together with its own tuple (if it also acted asan
active source in the current round), and forwards the resulting
packet toward the sink. This means that the more descendants
a node has, the more tuples—hence, the more bits—it has
to transmit. More specifically, a node that observes a tuple
aggregateA containing tuples from a set of sourcesI(A) has
to transmit|I(A)|(⌈log2 N⌉ + ⌈log2 M⌉) bits.

2) The Coding Protocol:Each tupleti is mapped tod
vectors of lengthℓ. During each round, each node sends
exactlyd vectors of lengthℓ: A node that has no children sends
the d vectors that represent its tuple. A node with children
waits to receive all the vectors sent by its children, linearly
combines them with its ownd vectors (if it also acted as an
active source in the current round) to produced new vectors,
which it forwards toward the sink. This means that, no matter
how many descendants a node has, it always has to transmit
the same number of bits.

To reason about the coding protocol, we use the notion of
subspace: A vector of sizeℓ belongs to theℓ-dimensional
vector spaceV = F

ℓ
q. A set ofd linearly independent vectors

of size ℓ spans ad-dimensional subspace ofV , denoted by
π. We say that two subspaces aredistinct if they differ in at
least one dimension. For instance, each vector sent by source
Si in Figure 1 belongs to the8-dimensional vector spaceF8

2

and represents a1-dimensional subspace ofF8
2. We will use

two subspace operations:

• πα + πβ = {x + y | x ∈ πα, y ∈ πβ} is the smallest
subspace that contains bothπα andπβ ;

1In this paper, we focus on routing over trees, however, our protocol can
be adapted to other routing structures as well.
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• πα ∩ πβ = {x | x ∈ πα andx ∈ πβ} is the largest
subspace that belongs to bothπα andπβ .

Moreover, to express how “far apart” two subspaces are we
use thedistancebetween two subspacesπα and πβ , defined
as

d(πα, πβ) , dim(πα + πβ) − dim(πα ∩ πβ). (1)

So, we can say that, in the coding protocol, each nodei uses
a codebookCi, which maps each message to ad-dimensional
subspace ofFℓ

q:

Ci :Mi →

{π
(i)
j : π

(i)
j ⊆ F

ℓ
q, dim(π

(i)
j ) = d, 1 ≤ j ≤ |Mi|},

i = 1, . . . , N

To communicate messagemi, nodei chooses the correspond-
ing subspaceπ from Ci and generatesd vectors that spanπ.
For instance, sourceS1 in Figure 1 needs to communicate
one of two messages,m1 and m2. S1’s codebook mapsm1

to the subspace spanned by vector[00000000] andm2 to the
subspace spanned by vector[00000001].

The sink determines the transmitted tuples by observing the
subspace spanned by the vectors it receives: Assuming node
i generates vectors that span subspaceπi, the sink observes
vectors from the subspaceπ1+π2+· · ·+πN . More specifically,
if the sink has a single child (as in Figure 1), it will receive
exactlyd vectors fromπ1+· · ·+πN , which can be represented
asY =

∑N

i=1 GiXi, whereY is a matrix whose rows are the
vectors observed at the sink,Xi is a matrix whose rows are
the original vectors generated by nodei, andGi is a “mixing
matrix” that represents the end-to-end transformation incurred
by Xi. The sink does not know the mixing matrices (and
neither does any other node), hence, it cannot determineXi

from Y. However, no matter what the values ofGi are, as
long as there is no end-to-end information loss, if the rows of
Xi spanned subspaceπi, then the rows ofY will necessarily
span subspaceπ1 + π2 + · · · + πN , because subspaces are
unaffected by linear operations.

In order for the sink to unambiguously determine the
transmitted tuples, every possible combination of transmitted
tuples must result in a different subspace. Hence, we define
a code as a set ofN codebooks, each corresponding to a
different node, and we say that a code isidentifiable, if each
distinct set of tuples generated by the nodes can be uniquely
decoded at the sink. More formally:

Definition 1 (Identifiable Code): An identifiable code is a
set of N codebooksCi = {π

(i)
j : 1 ≤ j ≤ |Mi|},

i = 1, . . . , N , with π
(i)
j ⊆ F

ℓ
q d-dimensional subspaces, such

that every possible combination of subspaces generated by the
N sources and linear operations at the intermediate network
nodes, results in adistinct subspace observed at the sink.

III. C ODE DESIGN

We start with the observation that, in many practical sce-
narios, the network topology and/or the application impose
a natural limit on the number of original vectors that get
combined within the network. Indeed, two vectors originally

generated by two different sources get combined only if their
paths to the sink overlap. In Figure 1, the sink has a single
neighbor (nodeB), so all the vectors generated by all the
sources get combined at that neighbor.

Now consider a network, where the sink hasK neigh-
bors, and sources are symmetrically deployed along theseK
directions—in which case, we can think of Figure 1 as the
“branch” of the network corresponding to one of these neigh-
bors. In this case, each packet that reaches the sink contains
approximatelyN

K
combined source vectors. Moreover, in many

applications (e.g., anomaly-sensing applications), we expect
only a small subset of the sensors to report during each round,
hence, fewer thanN sets of vectors are generated and get
combined within the network.

With this in mind, we formulate our code-design problem
as follows: GivenN potential sources, we assume that each
vector that reaches the sink is a linear combination of original
vectors fromat mostK sources (and we do not know which
K). Note that multiple such vectors might reach the sink, each
potentially containing the combination of adifferent subset
of K sources. We want to design codes that allow the sink
to look at each received vector and determine (i) which is
the corresponding subset of sources and (ii) what are their
messages. Note thatK = N corresponds to the special case
where all sources are active and all original vectors may be
combined.

For simplicity, we first describe a code for the case where
each sensor either communicates a single bit of information
(to indicate that a certain event occurred) or remains silent
(to indicate that it didn’t) (Section III-A). We later generalize
to an arbitrary message-set size (Section III-B) and extend
our code construction to provide forward error correction
(Section III-C).

A. Single-bit Messages

Our construction leverages properties of erasure correcting
codes [9] and proceeds as follows: select a linear code of
length N , minimum distancedmin = min{2K + 1, N + 1},
and redundancyℓ, with ℓ as small as possible; consider the
ℓ×N parity check matrixH [9]; assign to each source a dif-
ferent column ofH, which corresponds to a one-dimensional
subspace of theℓ-dimensional space. This code results in
each active source generating a single vector of lengthℓ: to
communicate messagem1, the source generates a vector with
all zeros; to communicate messagem2, the source generates
the vector that corresponds to its column ofH.

This code is identifiable because of a well known property
of the matrixH: given a linear code with minimum distance
dmin, any dmin − 1 columns of the parity check matrixH
are linearly independent[9]. For example, fordmin = 2K +
1, any 2K columns of the parity check matrix are linearly
independent; thus, if at one round we haveK1 ≤ K active
sources, each sending a different vectorui, and at another
round we have a different set ofK2 ≤ K active sources, each
sending a vectorvj , then

v1 + v2 + · · · + vK1
6= u1 + u2 + · · · + uK2

(2)
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This inequality is a direct consequence of the fact that any2K
vectors are linearly independent: indeed, if (2) was an equality,
there would be2K or fewer linearly dependent vectors. Hence,
every possible combination of subspaces generated by the
active sources results in a distinct union subspace, which
means that our code is identifiable.

Note that we never need to have minimum distance greater
thanN +1, since there existN nodes and, thus, we can have
at mostN distinct vectors appearing in (2). This implies that,
for all the cases whereN ≥ K ≥ N

2 , i.e., at least half of
the nodes are active, we needdmin = N + 1 and we can
select w.l.o.g. the full rankN × N parity matrixH to be the
identity matrix. In this case, sourcei generates a vector with
1 at positioni and0 elsewhere. It is easy to see that this code
has the optimal length: since each packet has to conveyN
independent unit entropy source messages (i.e., one bit from
each source), it cannot have length less thanN .

The scalability of our code depends on howℓ (the size of the
vector generated by each source) depends onN (the size of the
network) andK (the maximum number of vectors that can get
combined) asN grows, which turns out to beO(K log N).
This is related to a well studied problem in coding theory,
namely, for a given code lengthN , and a given minimum
distance2K + 1, what are upper and lower bounds on the
number of codewordsA(N,K) this code can have [9]. Using
the Gilbert-Varshamov lower bound and the sphere packing
upper bound [9], forK < N

4 , we get that

ℓ ≤ NHq(
dmin − 1

N
), and (3)

ℓ ≥ NHq(
dmin − 1

2N
) −

1

2
logq

(

4(dmin − 1)(1 −
dmin − 1

2N
)

)

whereHq(·) is the q-ary entropy function, namely,Hq(p) =
p logq(q−1)−p logq p−(1−p) logq(1−p). Considering fixed
values ofK and thatdmin−1

N
= p = 2K

N
, the termlogq(1−

2K
N

)
approaches zero, and the upper bound becomes

ℓ ≤ N(
2K

N
logq(q − 1) −

2K

N
logq

2K

N

− (1 −
2K

N
) logq(1 −

2K

N
)) (4)

≅ 2K logq N + 2K logq

(q − 1)

2K
(5)

where2K logq
(q−1)
2K

is a constant term. Hence, the behavior
of the bound determined by the termK logq N . A similar
argument can be made for the lower bound.

Figure 2 plots the exact values of these bounds from (3) as
a function ofN , for K = 2 and K = 20. We can see that
the vector lengthl resulting from our code is a fraction of the
network sizeN that goes to zero as the ratiodmin−1

N
= 2K

N

goes to zero; we conclude that our code is scalable, in the
sense that the vector length does not increase proportionally
to the network size, but, instead, more slowly, as a function
of the maximum number of combined packets. Again, it is
easy to see that this code length is optimal: indeed, otherwise,
we would be able to construct codes with the required error
correcting capabilities and smaller length.

Figure 3 illustrates the benefits of joint identity-message

Identifiable Codes:

• Let H be theℓ×N∆ parity check matrix of a binary

code with minimum distancemin{2K∆+1, N∆+1}

• Assign to sourcei the subspaceΠi spanned by the

(i − 1)∆ + 1 to i∆ columns ofH

• SelectCi = {πi | πi ⊂ Πi,dim(πi) = 1}

• For single-bit messages∆ = 1.

Identifiable Codes for Error Protection:

• Same steps 1 and 2 as in identifiable codes

• SelectCi = {πi | πi ⊂ Πi,dim(πi) = d} with
D(Ci) > 2ri

coding over aggregation with respect to busiest-node transmis-
sions. Consider a tree similar to the one in Figure 1, whereN
sources connect to a sinkA through a single linkBA. Assume
that at mostK sources are active, each communicating a
single-bit message. Aggregation requiresK log2 N identity
bits to traverse the linkBA, whereas coding requires a number
of bits ℓ bounded according to (3). Figure 3 shows that coding
results in significantly lower load on linkBA.

The difference can be interpreted as follows: with coding, to
each set ofK sources corresponds a specific coded packet that
is received by the sink. With aggregation, theK source packets
may be aggregated in an arbitrary order, and allK! possible
permutations convey the same message to the sink; because
this ordering conveys no information, we loselog2(K!) bits,
which equals the gap between the coding lower bound and
aggregation in the plot. Note that the currently best found
codes closely follow the lower bound.

B. General Case

We now consider the general case, where each source
communicates one ofM messages. The only difference from
the single-bit-message case is that, instead of allocatinga
single column of the matrixH to sourcei, we allocate to it∆
columns that span a subspaceΠi; sourcei can use any sub-
subspace withinΠi as a codeword. For simplicity, we only
consider the case where sourcei uses each of theq∆ − 1
one-dimensional subspaces withinΠi to communicate one of
M = q∆ − 1 different messages. In this particular case, the
code results in each active source generating a single vector
of length ℓ. In principle, however, we can also use multi-
dimensional subspaces as codewords—for instance, any code
design method from [10], usingΠi as our original space.

Each active source now generates one vector of lengthℓ,
which is a linear combination of at most∆ columns of the
matrix H. Since at mostK vectors can get combined, the sink
will receive vectors that are linear combinations of at most
K∆ columns ofH. Thus, provided the minimum distance of
the code is greater than2K∆+1, two received vectors will be
equal if and only if the set of active users and their messages
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Fig. 2. Bounds on the lengthℓ of generated binary vectors (q = 2)
when K = 2 and K = 20 sources get combined, as a function of
the number of sensor nodesN .

are the same, so our code is identifiable. As before, given
the total number of sources equalsN , we can never have a
combination of more thanN∆ columns ofH, leading to the
second upper limit in the required minimum distance.

C. Error Resilience

Our code construction can be naturally extended to provide
forward error correction. Such an approach is well matched to
the cases where feedback cannot be readily used or sensors fail
(and could not retransmit anyway). To achieve this, we need
to introduce redundancy into the transmitted information,by
separating the subspaces chosen as codewords by a certain
“distance.” We define the minimum distance of the codebook
Ci as the closest two subspaces from this codebook can get.
More formally,

D(Ci) , min
πα,πβ∈Ci:πα 6=πβ

d(πα, πβ), (6)

whered(πα, πβ) was defined in (1). Define the union subspace
codeC as

C ,
{

π(1) + · · · + π(N)| π(i) ∈ Ci, i = 1, . . . , N
}

. (7)

The following theorem relates the minimum distance of
code C to the error and erasure correction capability of
codebooks{Ci} under minimum distance decoding.

Theorem 1:Assume an identifiable code{Ci} is used for
transmission over the network. Letπ(i) ∈ Ci, i = 1, . . . , N ,
be transmitted andπR be received. Assume at mostri vectors
get erased from sourcei and at mostt corrupted vectors are
injected in the network. Then, if

2

(

t +

N
∑

i=1

ri

)

< D(C), (8)

a minimum distance decoder allows the receiver to recover the
sent subspaces for each source.

Proof: DefineπS = π(1)+· · ·+π(N) andπ̂(i) = Eri
(π(i))

for i = 1, . . . , N , where Er(π) is an erasure operator that
erases randomly fromπ at mostr dimensions. Then forπS =
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Fig. 3. Comparison of the maximum transmission load for aggrega-
tion and coding forN = 128, as a function ofK.

π(1) + · · · + π(N), Π̂ = π̂(1) + · · · + π̂(N),

d(πR, πS)
(a)

≤ d(πS , Π̂) + d(πR, Π̂)

(b)

≤

N
∑

i=1

d(π(i), π̂(i)) + d(πR, Π̂) ≤

N
∑

i=1

ri + t,

where (a) follows from the triangle inequality and (b) follows
from Lemma 1. For another codewordπ′

S 6= πS in C we have
D(C) ≤ d(πS , π′

S) ≤ d(πS , πR) + d(πR, π′
S).

Combining these two inequalities we can write

d(πR, π′
S) ≥ D(C) − d(πS , πR) ≥ D(C) −

(

t +

N
∑

i=1

ri

)

.

So if the inequality (8) holds, thend(πR, π′
S) > d(πR, πS)

and a minimum distance decoder would selectπR. Because
{Ci} is an identifiable code, the receiver is able to decompose
πR uniquely and find the original messages.

Lemma 1:Supposeπi, i = 1, . . . , N , are subspaces of
some vector spaceW . Assumeπ̂i ⊆ πi for i = 1, . . . , N .
Then we have

d(π1 + · · · + πN , π̂1 + · · · + π̂N ) ≤

N
∑

i=1

d(πi, π̂i).

IV. T HEORETICAL PERFORMANCECOMPARISON

We now compute theoretical performance bounds for the
case of error-free communication,i.e., if we assume that each
packet transmitted by a node is successfully received by its
parent (without any retransmissions). As performance metrics,
we consider the average and maximum codeword used by the
communication protocols we compare. We assume that we
are provided with a no-cost character that can signal the end
of a string, hence, we can use non-prefix-free variable-length
packets without paying any additional performance cost.

We compare three communication protocols: (i)Aggrega-
tion, as defined in Section II-C; (ii)Coding, as defined in
Section III; and (iii)Optimal, which is defined as follows. Each
node that acts as a relay maps each possible tuple aggregate
A to a binary string, such that the average length of the
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Fig. 4. Average and maximal number of bits for aggregation, coding and the optimal scheme, for a sensor network withN = 128 source
nodes, as a function of the maximum numberK of sources combined in each aggregate.

used codewords is minimal. This allows arbitrary complexity
operations at network nodes, as well as variable-length coding.

We here provide the calculations for the average cost (code-
word length) for the above three cases; the calculations forthe
maximum cost are very similar. In all three cases, the goal is
to design a codebook that allows each relay to transmit its
observed tuple aggregate to the next hop towards the sink. We
assume that we have no a-priori topological information,i.e.,
the coding scheme should support transmission of all possible
tuple aggregates from each relay. We thus compute the average
value for a uniform distribution over allA, since any tuple
aggregateA can be observed. Recall from Section II-C that a
tuple aggregateA is the set of tuples that are observed by a
relay and correspond to a set of sourcesI(A).

Given afixed setof sourcesI(A), the number of possible
tuple aggregates isM |I(A)|. Thus, given afixed number of
sources|I(A)|, we can build a number of tuple aggregates
equal to

(

N
|I(A)|

)

M |I(A)|. The total number of possible tuple
aggregates is therefore:

N
∑

i=0

(

N

i

)

M i = (M + 1)N .

If at most K ≤ N sources are contained in each tuple
aggregate, each relay must support the transmission ofT (K) =
∑K

i=0

(

N
i

)

M i different tuple aggregates.
The performance of aggregation is in this case:

AVGagg
bits(N, M, K) =

P

K

i=0

`

N

i

´

M i · i (⌈log2(N)⌉ + ⌈log2(M)⌉)

T (K)

The performance of the optimal scheme is:

AVGoptimal
bits (N, M, K) =

P

l−1
i=0 i · 2i + (T (K) − (2l(K) − 1)) · l

T (K)

where in this casel(K) is defined as:

2l(K)−1 6 T
(K) 6 2l(K)+1−1 ⇒ l(K) =

l

log2

“

T
(K) + 1

”m

−1.

For coding, we can apply the same formula as above using
a different l(K) value. By using the bounds described in
Section III-B when using field size2 andK < N/2, we have
in this case that

log2

(

2K∆
∑

i=0

Ni

)

> l(k) > log2

(

K∆
∑

i=0

Ni

)

,

whereNi ,
(

N⌈log
2
(M+1)⌉
i

)

. Note that whenK ≥ N/2 the
length of the short codes isN⌈log2(M + 1)⌉.

Figure 4 shows the performance of the aggregation, coding,
and optimal protocols, in terms of maximum and average
codeword length, for a fixed number of nodesN = 128, as a
function of the maximum numberK of sources combined in a
tuple aggregate. We observe that coding performs better than
aggregation and close to the optimal protocol for small values
of M , while its performance deteriorates for larger values of
M and small values ofK. The plots also depict with a bold
line the performance of coding when we allow all possible
source combinations (i.e., when K = N ). This performance
deterioration is due to the fact that codes are constrained to
employ fixed-length packets and simple operations at network
nodes. If higher complexity is allowed, we can opt for optimal
codes that significantly outperform aggregation at all regimes.
We note that, asK increases, the performance of aggregation
is significantly worse than the performance of coding.

V. SIMULATIONS

We implemented the aggregation protocol from Section
II-B and the joint identity-message coding protocol (we will
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Fig. 5. Aggregation and coding performance as a function of network size, when all nodes in the network are active sources. The top graphs
are computed by taking into account only the data bytes,i.e., the bytes that carry the identities and messages of the active sources. The
bottom graphs take into account both the bytes that carry data and those that carry protocol headers. Both aggregation and coding incur15
bytes of header overhead per packet. This includes MAC and CTP headers.

call it the “coding protocol” for brevity) from Section III as
TinyOs [11] modules and compared their performance using
the TOSSIM simulator [2]. We now describe our testing setup
and results.

A. Setup

We simulate a fixed network of MICAz sensors [12] located
in a parking structure, where the sensors are placed on a square
grid with the sink located on the upper left corner. We place
each node at8 meters from its closest neighbors (this choice is
justified below). We use the channel parameters for a parking
structure reported in [13].

Our simulated network operates in rounds. In each round,
some or all of the nodes in the network act as active sources,
i.e., communicate their identity and a1-bit message to the
sink. We do not experiment with more than256 nodes, because
we found that connecting more nodes to a single sink causes
congestion and packet loss around the sink (no matter what
protocol we use to send data to the sink).

We use the default CSMA based MAC layer included in
TinyOs. We rely on standard MAC-layer acknowledgments
and retransmissions for error protection,i.e., we do not use our
coding-based error correction from Section III-C. We allowa
maximum payload of120 bytes and a maximum number of30
retransmissions per packet (the default value of the MAC-layer
implementation that comes with TinyOs), although, in practice,
we rarely observe more than5 retransmissions. The channel
conditions and network congestion in our simulations are such
that each packet has to be retransmitted on average1.5 times
to successfully reach the transmitter’s parent. We chose this

number, because it is consistent with reports from deployed
sensor networks [8]. We should note that this number makes
sense, given that sensor networks are designed to be energy-
efficient, hence it is reasonable for nodes to be placed close
enough to avoid multiple retransmissions in the common case.

We rely on the Collection Tree Protocol [8] for creating
and maintaining a spanning tree rooted at the sink. In both
aggregation and coding, each node tries to send only one
packet in each round,i.e., receive data from all its children,
combine them into one packet, and send that to its parent. This
is achieved in the following way: In each round, each node
records the number of its children,i.e., the number of nodes
that sent data to it. In the next round, the node sends a packet
to its parent as soon as it has received one packet from each
recorded child, or a timer has expired. It is possible that the
node receives a packetafter it has already sent one packet to
its parent; such “delayed packets” are immediately forwarded
to the receiver’s parent.

We place each node at8 meters from its closest neighbors,
because this setting allows more than99% of the transmitted
packets to reach the sink.I.e., even though we use MAC-layer
retransmissions and CTP to keep our network connected in
the face of channel changes, if we place our sensors more
than8 meters from one another, at least1% of the transmitted
packets fail to reach the sink, no matter what protocol we use
(even if we use plain CTP without aggregation or coding).

We compare aggregation and coding in terms of two met-
rics: (i) “Average transmissions” is the total number of bytes
transmitted by all nodes during the experiment, divided by
the number of nodes and the number of rounds. This metric
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Fig. 6. Aggregation and coding performance as a function of network size, when 20% of the nodes in the network are active sources. The
graphs are computed by taking into account only data bytes,i.e., bytes that carry the identities and messages of the active sources.

shows how the two protocols compare in terms of total energy
spent by all nodes, where we expect coding to do worse
than aggregation. (ii) “Busiest-node transmissions” is the total
number of bytes transmitted by the node that transmits the
most bytes during the experiment, divided by the number of
rounds. This metric shows how the two protocols compare in
terms of energy spent by the busiest node, where we expect
coding to do (significantly) better than aggregation.

We break down each result in three non-overlapping ele-
ments: (i) “First packets” consist of the first packet sent by
each node to its parent during each round. (ii) “Subsequent
packets” consist of the packets sent by each node after the
node has already sent one packet to its parent in the current
round. These may include the delayed packets mentioned
above and/or packets due to fragmentation,i.e., created when
a node has more data to send to its parent than can fit in
a single packet. (iii) “Retransmissions” refer to MAC-layer
retransmissions.

We consider subsequent packets separately, because they
can have a significant performance impact on coding, whereas
they do not affect aggregation. To understand why, considerthe
network of Figure 1 and suppose it runs the coding protocol,
i.e., each of the8 leaf nodes sends an8-bit vector to nodeB,
which XORs all vectors and sends the resulting8-bit vector to
the sink. Now suppose that nodeS8 sends out its vectorafter
B has already sent one vector to the sink; as a result,B has
to forwardS8’s vector to the sink as is, which means thatB
now sends a total of2 × 8 bits of data to the sink (twice as
it would send if there were no delayed vectors). In contrast,
if the same network runs the aggregation protocol, each of
the 8 leaf nodes sends a4-bit {identity, message} tuple toB,
which forwards each tuple to the sink. So,B sends8× 4 bits
of data to the sink, independently from whether it manages to
combine all tuples into a single packet or not.

So, we expect subsequent packets to reduce, to some extent,
the advantage of coding over aggregation in terms of busiest-
node transmissions. The question is by how much, and this is
what we study with our experiments.

B. Results

Figure 5 shows the average and busiest-node transmissions
as a function of network size, when all nodes in the network
are active sources. As expected, coding results in more average

transmissions and significantly fewer busiest-node transmis-
sions than aggregation. For instance, in a100-node network,
aggregation causes the average node to transmit about10
bytes of data per round and the busiest node to transmit about
100 data bytes per round; coding causes the average node to
transmit about15 bytes of data per round and the busiest node
to transmit about40 bytes of data per round.

The effect of subsequent packets on coding performance is
insignificant. Of course, this is because, in our implementation,
each node waits to receive from as many children as possible
before sending to its parent. However, the point of doing
an actual TinyOs implementation and TOSSIM experiments
was precisely to show that, in a fixed, realistic network, it
is feasible, in most rounds, for the nodes to estimate the
number of their children, hence, it is also feasible to practically
eliminate delayed packets.

We observe that, when we have144 or more nodes and
we use aggregation, the busiest node incurs a relatively large
number of subsequent packets and retransmissions. This is
explained as follows. When we use aggregation, the busiest
node is a neighbor of the sink that acts as a relay to a large
number of other nodes. When we have more than144 nodes,
the busiest node receives, in each round, more data than can
fit into a single packet, hence must send subsequent packets
to its parent (the sink). The large number of retransmissions
is due to the fact that the busiest node has to send relatively
large packets, which are susceptible to transmission errors.

Figure 6 shows the average and busiest-node transmissions
as a function of network size, when only20% of the nodes
in the network are active sources. This is a “bad” scenario for
coding, as there are relatively few active sources, hence, even
the busiest node incurs a relatively low load, which means that
there is not much room for improvement through coding.E.g.,
in a 256-node network, where only64 of the nodes are active
sources, aggregation causes the average node to transmit about
3 bytes of data per round and the busiest node to transmit about
70 bytes of data per round; coding causes the average node to
transmit about7 bytes of data per round and the busiest node
to transmit about60 bytes of data per round.

VI. RELATED WORK

Recently, techniques inspired from coding and network
coding have been successfully used to harness the broadcasting
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capabilities of the wireless medium [14], [15], [16], [17],[18],
implement intelligent in-network storage [19], and provide
resilience in lossy environments [20]. These coding techniques
are not suitable for identity-aware sensor networks, as they are
developed with a focus on data dissemination (as opposed to
joint identity/message delivery).

Our proposed coding scheme relies on subspace codes,
which have been studied in the context of non-coherent com-
munication over fading point-to-point wireless channels [21],
quantum communication [22], and, more recently, network
coding, to provide error and erasure correction [10], [23].
The previous constructions address the single-source case, do
not encode the source identity, and are designed for large-
packet transfers. We develop constructions that incorporate
in the code the identity of multiple sources with low com-
munication overhead and are targeted to (very) small-packet
transfers. Additionally, our constructions obey the constraint
that each sensor node transmits the same number of packets,
independently of its location in the network, which is not the
case for the constructions in [10], [24], [23].

Significant research effort has been invested in reduc-
ing sensor-communication overhead through distributed, in-
network data aggregation. The proposed techniques exploit
data compression [5], [4], [25] or calculate functions of the
observed measurements such as their average [25]. None of
these is applicable in the case where node identities form the
bulk of the data. For small packet lengths, the optimal (non-
coding) approach is aggregation,i.e., to package, at each node,
all the received identities and messages into a single packet.
As discussed in more detail in the paper, this requires in-
network content processing and, most importantly, resultsin
unequal-length packets whose size increases significantlyas
we approach the sink; hence, energy consumption is unequally
distributed among sensor nodes, in particular, concentrated on
centrally located “bottleneck nodes” that can, as a result,fail
and disrupt network operation.

Finally, our proposed approach does not fall in the frame-
work of synopsis operation [26] for several reasons, most
importantly because (i) it does not guarantee the duplication
insensitivity property and (ii) our sources may send multiple
instead of one packets for each periodic measurement.

VII. C ONCLUSIONS

We have formulated the paradigm of identity-aware sensor
networks to capture applications where the identities of the
sensors form the bulk of the communicated data. We have
proposed a communication protocol for such networks, where
sensor identities and measurements are jointly encoded in
fixed-size vectors; to the best of our knowledge, this is
the first such approach. Its benefits consist of balancing the
transmission load across all nodes in the network (important
for networks that are periodically recharged through natural
resources), low-complexity network operations, and graceful
incorporation of error resilience.
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