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Abstract—In a significant class of sensor-network applications, network of tens or hundreds of nodes, the identities of the re
the identities of the reporting sensors constitute the bulk of porting nodes now become the bulk of the communicated data,

the communicated data, whereas the message itself can be agyhereas the message itselie( each reported measurement)
small as a single bit—for instance, in many cases, sensors are . .
can be as small as a single bit.

used to detect whether and where a certain interesting condition ) ) .
occurred, or to track incremental environmental changes at fied We use the ternidentity-aware sensor netwotk describe

locations. In such scenarios, the traditional network-protocol such a paradigm (where each sensor periodically communi-
paradigm of separately specifying the source identity and the cates to the sink its identity plus a small message). This is
message in distinct fields leads to |rjeﬁ|0|ent communication.  in contrast to the identitgnaware sensor networks usually
This work addresses the question of how communication . - .

should happen in such identity-aware sensor networks. We cal- encounte_red in the literature, where the sink collectstfans
culate theoretical performance bounds for this type of communi- ©Of the histogram of the sensor measurements, such as the
cation, where “performance” refers to the number of transmitted average or maximum temperature measured by all the sensors.
bits. We propose a communication protocol, where the identity In an identity-aware sensor network, every piece of in-
and message of each source are specified jointly using subspac¢, mation (identity and message) produced by each sensor

coding. We show through analysis and simulation that our t h the sink. This affect tion in t
protocol's performance is close to optimal and compare it to must reac € SInk. IS affects energy consumption in two

the performance of a traditional protocol, where identity and Ways. First, there is no room for reducing the amount of

message are specified separately. transmitted traffic (and, hence, overall energy consumptio
Index Terms—Wireless sensor networks, Identity-aware sen- 0¥ €Ombining multiple messages into one valeeg( their
sors networks, Network coding, Energy efficiency sum), as typically proposed for identity-unaware networks

Second, the “busiest” nodes in the netwoile.( those that
are located close to the sink and act as relays for the rest
of the network) have to forward significantly more traffic tha

In traditional network protocols, each packet carries itodes in the network periphery. For sensor networks opeyati
source identity in a dedicated header field, separately fromith renewable energy [1], this raises the amount of pessen
the communicated message, which constitutes the packerergy required to run the network for a given amount of
payload. To increase their information rate, several mait time, making it harder to charge the network through natural
use encoding or compression techniques that look to mieimizesources.
the size of the message; to the best of our knowledge, nondVith this work, we address the question of how communi-
of these techniques consider the source identity as partaation should happen in identity-aware sensor networks. Ou
the data that needs to be encoded or compressed—andnfiain observation is that sensor identities are a specidl &dn
good reasons: In the typical communication scenarios wheteta: for a fixed node, the identity is a constant number that
encoding or compression makes sense, the message cesstitlees not change with every transmission, in contrast to the
the bulk of the communicated data, whereas the sourceiiylentmessages that do. Thus, we expect to develop a more efficient
overhead is relatively insignificant. communication protocol by treating identities speciabiyher

The situation is reversed in wireless sensor networks tithan treating them like messages, and we show that this is
monitor the evolution of an environmental variable overgimindeed the case.
and space: Sensors are often used to tvawdtherandwherea Our contribution is a new, easy-to-implement communica-
certain condition occur®.g, temperature exceeds a thresholdjon protocol, where the identity and message of each source
a perimeter is violated, soil or water is contaminated; imeot are jointly specified using subspace coding. To evaluate our
cases, they are used to track incremental changes at fixgdtocol, we compute theoretical performance bounds for
locations,e.g, the evolution of snow height at mountain peakilentity-aware communication, where we consider two per-
for avalanche prediction or seismic activity for earthcgiakiformance metricsaverage transmissionsapture the average
prediction. In such scenarios, it makes sense to assocale enumber of bits that are transmitted by any node in the network
sensor with a fixed location and have it report, periodigallywhile busiest-node transmissiomspture the number of bits
its identity and measurement to a collecting sink; assunainghat are transmitted by the “busiest” node,, the one that has

to transmit the most bits. We show that the performance of our
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this advantage increases with the number of nodes in the [00000000]
network.

The basic idea behind our protocol is to assign a different [00100000]
codebook to each sensor and let each sensor implicitly gonve
codeboo : ; Y §ONVE 140000000] @
its identity through its choice of codebook. We realize this
using subspace encoding: each reporting sensor commesicat
its identity by generating a set of vectors that represent a
distinct subspace—distinf:t_from the s_ubspaces ge_neratatu l_Jy [00000100]
other sensors. By combining incoming vectors, intermediat
nodes essentially produce different (compact) representa
of the subspaces generated by the reporting sensors. Wstexpl LS < S d their ident o ab A

: . : : 9. 1. ourcesSy, ..., Ss send their identity and a-bit message to the

the invariance properties of subspaces_, such that neiémer {inkA through a relay nodés.
sors nor sink need any knowledge of either network topology
or intermediate-node operations in order to generate their

vectors or (in the sink’s case) decode them. Spatial Correlation: In other cases, the spatial field under
The rest of the paper is organized as follows. Section Measuremerat a given timevaries smoothly over space—this
presents examples of identity-aware sensor networks & il js the case, for instance, with temperature and pressure [3]
trates the main idea behind our protocol. Section Il déswi [4]. We can leverage such smooth variation by having a set
our protocol in detail. Section IV presents our theoreticgl densely deployed sensors communicate only few bits of
performance analysis, while Section V presents exper@ahenfformation, then use techniques like distributed sounirg
results obtained through the TOSSIM simulator [2]. SecWn [5] to reconstruct the entire spatial field. This idea takes

discusses related work, and Section VII concludes the papghyantage of “oversampling” of the sensor field, and cdhect

coarse information from each sensor.
Il. MOTIVATION AND SETUP Multi-stage Collection: Sometimes we are interested in

We consider sensor networks where each node comnfigconstructing only a few “interesting” regions,g, examine
nicates its identity and a small (relatively to the identityonly the areas where the measurements suggest that there
message to a collecting sink. This is different from thedgpi iS potential for an avalanche. In such cases, it makes sense
scenarios discussed and analyzed in the literature, wht@ecollect data in stages: in the first stage, each sensor
sensor networks are used to compute aggregate statistis (communicates its identity along with few bits of informatio
the average temperature in a building) that do not requitié'st enough to get a coarse representation of the field); if
associating each message with a specific sensor. Given 8@imething interesting is revealed, the sink queries thevaet
departure from the commonly used paradigm, to motivate og#nsors for more information in the second stage [6]. In many
work, we first discuss a few applications where sensor itlentpractical scenarios, it is enough for each sensor to send a
forms the bulk of the communicated data (Section 11-A). Thesingle bit of information during the first stage—signalingy f
we illustrate the main idea behind our protocol (SectioB)I- instance, whether a threshold was reached, a perimeter was
and introduce our network model (Section 1I-C). violated, or an animal was sighted.
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[10101110]

[00001000] Sink

[00000010] [00000000]

A. Applications B. Basic Idea: Representation of Identities

In all the applications we consider, the sensors are used tdn the context of the applications discussed above, the
periodically reconstruct thepatial fieldof a physical quantity, traditional approach of keeping the source identity and the
i.e., the variation of that quantity as a function of space [3].message in separate fields leads to inefficient communicatio

Differential Updates:In many cases of environmental monWe now illustrate this inefficiency with a simple example and
itoring, to avoid unpleasant surprises, we need to choads#roduce the idea of joint identity-message coding.
the measurement frequency such that the spatial field unde€onsider the network of Figure 1, wheBesource nodes
measurement changes relatively slowly. For instance, wheeed to communicate information to a sink nodevia a
monitoring the level of snow on a mountain surface farelay nodeB. Suppose each sourcg,i = 1,...,8, needs
avalanche prediction, it makes sense to measure frequemtlycommunicate its identity and k&bit message.
enough, such that, at any location, the snow level neverConsider the following communication protocol, which we
changes by more thalz4 centimeters between measurementsvill call “aggregation”: Each source creates a packet that
In such scenarios, each sensor needs to communicate ardgtains3 bits specifying its identity and bit specifying its
the difference of its new measurement from the last onmessage, and sends this to the intermediate @#deo relay
together with its identity. Assuming networks of tens othis information toA, B could naively forward the packets,
hundreds of nodes, the identity may require one or two byteshich would result ir8 packet transmissions over linkA; to
while the update itself needs only a few bits [3]. Many sucavoid this overhead? combines th& x4 identity and message
examples also arise in security applications, such as th@in bits into a single packet. This communication protocol can b
deployment of a sensor network in an office building, teasily generalized to work on an arbitrary tree: each source
measure atmosphere contamination. sends out a packet with its identity and message specified



in separate fields; intermediate nodes aggregate and frwarWe assume that the nodes build and maintain a routing tree
incoming packets toward the sink. rooted at the sinke.g, by using the Collection Tree Protocol
Aggregation results in unequal transmission load over tR€TP) [8]. The tree does not need to be static, but may adapt
different network links, with the heavier burden placed ba t dynamically to network conditions. So, when we say that a
links closer to the sink. In our example, it resultsdirbits of node “forwards a packet toward the sink,” we mean that it
information being transmitted over each li8kB as opposed sends the packet to its parent on the routing tree.
to 32 bits over link BA. During each round, each nodé¢hat acts as an active source
Now consider the following alternative communication promaps its tuplet; to one or more packets (according to the
tocol, which we will call “coding”. Each source; sends communication protocol used) and forwards these toward the
out an 8-bit packet with its message encoded in biand sink. Each node that has children acts as a relay: it waits
all other bits set td); this is the simplest example of usingto receive all the packets sent by its children, processas th
a “code” to represent the identity of a node along with itGaccording to the communication protocol used), and géesra
message. Nodé just XORs all incoming packets and sendsiew packets to forward toward the sink. So, the set of packets
the resultings-bit packet toA, as depicted in Figure 1. Nodesent out by each node contains all the tuples generated by the
A can interpret its received message with the understandimgde and the node’s descendants. We will refer to this set of
that positioni corresponds to the message sent by négde tuples as the “tuple aggregatel observed by the node, and
Again, this protocol can be easily generalized to work on ame will denote byI(A) the set of sources whose tuples are
arbitrary tree: source; sends out a packet with its messageontained in tuple aggregaté.
specified at biti and all other bits set t0; each intermediate  As a communication protocol, the network uses either
nodeXORs all incoming packets and forwards the one resultingygregationor coding
packet toward the sink. 1) The Aggregation ProtocolEach tuplet; is mapped to
With coding, each node forwards tisamenumber of bits, [log, N7 + [log, M] bits. The first[log, N bits encode the
i.e, communication overhead is evenly distributed across tfifentity of the source, while the remainindog, M| bits
network, alleviating the problem of depleting the battefy Gancode the message. During each round, each node sends
the nodes located close to the sink. As a result, comparedeigactly one packet: A node that has no children sends a packet
aggregation, coding leads to more efficient communication ghat includes its tuple. A node with children waits to reeeiv
link BA (8 bits instead of32); the price we pay is a small a]| the tuples sent by its children, concatenates them into a
decrease in efficiency on th&; B links, which now have to single packet together with its own tuple (if it also actecaas
carry8 (rather thant) bits of data. Note that, with coding, nodeactive source in the current round), and forwards the riesult
B is not required to understand and process the contentspgitket toward the sink. This means that the more descendants
incoming packets; information is always encoded at its@®ura node has, the more tuples—hence, the more bits—it has
and decoded at the sink, while each node is oblivious to the transmit. More specifically, a node that observes a tuple
codes used by other nodes. aggregated containing tuples from a set of sourcBs4) has
More formally, we propose that each source employstg transmit|Z(A)|([log, N| + [log, M]) bits.
different codebooki.e., a different mapping of messages to 2) The Coding Protocol:Each tuplet; is mapped tod
packets; the sink knows the codebook used by each sowgtors of length?. During each round, each node sends
and, hence, can determine who sent wha, the sender exactlyd vectors of lengttt: A node that has no children sends
implicitly communicates its identity through its choice ofhe 4 vectors that represent its tuple. A node with children
codebook. This approach agrees with the insight we have frg@its to receive all the vectors sent by its children, lihear
information theory: the scenario of Figure 1 is reminisceint combines them with its owe vectors (if it also acted as an
the classic multiple-access channel problem, where nhiltigyctive source in the current round) to produtaew vectors,
users simultaneously transmit to a single receiver overygich it forwards toward the sink. This means that, no matter
common channel; it is well known that the users do not haygw many descendants a node has, it always has to transmit
to explicitly specify their identities, as long as they cBeo the same number of bits.
distinct enough codebooks that can be disambiguated at thq reason about the coding protocol, we use the notion of
receiver ([7], Chapter 14). . . _ subspaceA vector of size/ belongs to the/-dimensional
The simple coding we described here is a special cagg:tor spaca” = F!. A set ofd linearly independent vectors
of joint identity-message coding, which is fully described o gjze ¢ spans ad-dimensional subspace &f, denoted by
Section III. 7. We say that two subspaces afistinct if they differ in at
least one dimension. For instance, each vector sent byeourc
C. Network Model S; in Figure 1 belongs to ths-dimensional vector spade
We consider a network oV sensor nodes and a sink, whichand represents &-dimensional subspace @3. We will use
operates in rounds. In each round, some or all of the nodes &¢$ subspace operations:
as “active sources.” When nodeacts as an active source, it
generates exactly one tuglg which has form(i, m;), wherei
is the identity of the node and,; is a message that takes values
from a setM;. For simplicity, we assume that all the sets; 1In this paper, we focus on routing over trees, however, oatogpl can
have the same cardinality, namely = |M;| = M, Vi. be adapted to other routing structures as well.

e To+mg ={r+y |z € M,y € mg} is the smallest
subspace that contains bath andzg;



e moNmg = {x | x € my, andz € mg} is the largest generated by two different sources get combined only ifrthei
subspace that belongs to bath andmg. paths to the sink overlap. In Figure 1, the sink has a single
Moreover, to express how “far apart” two subspaces are Weighbor (nodeB), so all the vectors generated by all the
use thedistancebetween two subspaces, and 7, defined Sources get combined at that neighbor.
as Now consider a network, where the sink h&s neigh-
a ) bors, and sources are symmetrically deployed along thése
d(Ta, m3) = dim(7a + 7p5) — dim(ma N 7p). (1) directions—in which case, we can think of Figure 1 as the
So, we can say that, in the coding protocol, each riagges Pranch” of the network corresponding to one of these neigh-
a codeboolC;, which maps each message td-dimensional Pors. In this case, each packet that reaches the sink centain

subspace oF.: appr'oxir.nately% combined source vectors. Moreover, in many
applications €.g, anomaly-sensing applications), we expect
Ci :M; — only a small subset of the sensors to report during each round
{F(i) S ON dim(w(i)) =d, 1<j<|M} hence, fewer thanV sets of vectors are generated and get
g =T J == ’

combined within the network.

With this in mind, we formulate our code-design problem
To communicate message;, node: chooses the correspond-as follows: GivenN potential sources, we assume that each
ing subspacer from C; and generated vectors that spam. vector that reaches the sink is a linear combination of nali
For instance, sourcé; in Figure 1 needs to communicatevectors fromat mostK sources (and we do not know which
one of two messagesy; andm,. S;’s codebook mapsn; K). Note that multiple such vectors might reach the sink, each
to the subspace spanned by vedtf000000] andm, to the potentially containing the combination of different subset
subspace spanned by vecf66000001]. of K sources. We want to design codes that allow the sink

The sink determines the transmitted tuples by observing thie look at each received vector and determine (i) which is
subspace spanned by the vectors it receives: Assuming ndtle corresponding subset of sources and (ii) what are their
i generates vectors that span subspagethe sink observes messages. Note th& = IV corresponds to the special case
vectors from the subspaeg+7,+- - -+ . More specifically, where all sources are active and all original vectors may be
if the sink has a single child (as in Figure 1), it will receivecombined.
exactlyd vectors fromr; +- - -+, which can be represented For simplicity, we first describe a code for the case where
asY = Y| G;X,, whereY is a matrix whose rows are theeach sensor either communicates a single bit of information
vectors observed at the sinK; is a matrix whose rows are (to indicate that a certain event occurred) or remains silen
the original vectors generated by nodeandG; is a “mixing (to indicate that it didn’t) (Section IlI-A). We later geradize
matrix” that represents the end-to-end transformationrireel to an arbitrary message-set size (Section 11I-B) and extend
by X;. The sink does not know the mixing matrices (andur code construction to provide forward error correction
neither does any other node), hence, it cannot deteriXine (Section IlI-C).
from Y. However, no matter what the values Gf; are, as
long as there is no end-to-end information loss, if the rofvs 0 )

X, spanned subspaee, then the rows ofY will necessarily A- Single-bit Messages

span subspace; + m + - + 7y, because subspaces are Qur construction leverages properties of erasure congcti
unaffected by linear operations. codes [9] and proceeds as follows: select a linear code of
In order for the sink to unambiguously determine th%ngth N, minimum distancel,,;, = min{2K + 1, N + 1},
transmitted tuples, every possible combination of tratteehi and redundancy, with ¢ as small as possible; consider the
tuples must result in a different subspace. Hence, we defing N parity check matrixH [9]; assign to each source a dif-
a codeas a set ofN codebooks, each corresponding to grent column ofH, which corresponds to a one-dimensional
different node, and we say that a codedentifiable if each subspace of the-dimensional space. This code results in
distinct set of tuples generated by the nodes can be uniqughth active source generating a single vector of lergtio
decoded at the sink. More formally: communicate message;, the source generates a vector with
Definition 1 Qdentlflable COde An identifiable code is a all zeros; to communicate message, the source generates
set of N codebooksC; = {W](-Z) : 1 < j < [Mil}, the vector that corresponds to its columnkf
i=1,...,N, with 7r](f‘) - Ff; d-dimensional subspaces, such This code is identifiable because of a well known property
that every possible combination of subspaces generateaeby af the matrixH: given a linear code with minimum distance
N sources and linear operations at the intermediate netwebk;,, any d.... — 1 columns of the parity check matrid
nodes, results in distinct subspace observed at the sink. are linearly independeni9]. For example, ford,,;, = 2K +
1, any 2K columns of the parity check matrix are linearly
I1l. CODE DESIGN independent; thus, if at one round we hakle < K active
. . . . sources, each sending a different vectgr and at another
We start with the observation that, in many P“’?‘C“C_a ! SC¥ound we have a differ%nt set &f, < K active sources, each
narios, the network topology and/or the application 'mposs%nding a vecton. . then
a natural limit on the number of original vectors that get 7
combined within the network. Indeed, two vectors origipall vy tva -+ Uk, FurFus -+ uk, (2)

i=1,...,N



This inequality is a direct consequence of the fact thatziiy Identifiable Codes:
vectors are linearly independent: indeed, if (2) was an li@gua
there would_ beK or fe_wer_ linearly dependent vectors. Hence, e Let H be thefx NA parity check matrix of a binary
every possible combination of subspaces generated by the
active sources results in a distinct union subspace, which| code with minimum distancain{2KA+1, NA+1}
means that our code is identifiable. e Assign to source the subspacél; spanned by the

Note that we never need to have minimum distance greater, (i — 1)A+1 t0 iA columns ofH
than NV + 1, since there exislV nodes and, thus, we can have
at mostN distinct vectors appearing in (2). This implies that, |e SelectC; = {n; | m; C II;, dim(m;) = 1}
for all the cases wher&v > K > % i.e., at least half of
the nodes are active, we nedg,;, = N + 1 and we can
select w.l.0.g. the full rankV x N parity matrixH to be the Identifiable Codes for Error Protection:
identity matrix. In this case, sourdegenerates a vector with
1 at positioni; and0 elsewhere. It is easy to see that this code | e Same steps 1 and 2 as in identifiable codes
has the optimal_ length: since each pacl_<et has to cowvey |, SelectC; = {m | m C IL;,dim(m) = d} with
independent unit entropy source messages pne bit from D(Cy) > 2r;
each source), it cannot have length less than

The scalability of our code depends on héhe size of the
vector generated by each source) dependd dgthe size of the
network) andK (the maximum number of vectors that can g
combined) asV grows, which turns out to b&(K log N).
This is related to a well studied problem in coding theor
namely, for a given code lengthV, and a given minimum
distance2K + 1, what are upper and lower bounds on th
number of codewordsl (N, K') this code can have [9]. Using
the Gilbert-Varshamov lower bound and the sphere packi
upper bound [9], forK < %, we get that

e For single-bit messageA = 1.

e?oding over aggregation with respect to busiest-node rnans
sions. Consider a tree similar to the one in Figure 1, whére
sources connect to a sinkthrough a single linkB A. Assume
Y¥hat at mostKk sources are active, each communicating a
single-bit message. Aggregation requirgSlog, N identity
Bits to traverse the linlB A, whereas coding requires a number
Hf bits ¢ bounded according to (3). Figure 3 shows that coding
Pesults in significantly lower load on linkB A.

The difference can be interpreted as follows: with coding, t

Apmin — 1 each set ofK” sources corresponds a specific coded packet that
= NH,y N ), and (3) is received by the sink. With aggregation, thiesource packets
Aimin — 1 may be aggregated in an arbitrary order, and/dllpossible

= NHy( 2N ) - 2 log, (4(dm"” - - 2N )) permutations convey the same message to the sink; because

this ordering conveys no information, we loke, (K!) bits,
which equals the gap between the coding lower bound and
aggregation in the plot. Note that the currently best found
codes closely follow the lower bound.

where H,(-) is the g-ary entropy function, namely,(p) =
plog,(q—1)—plog, p—(1—p)log,(1—p). Considering fixed
values ofK and thaté=ia=1 = p = 2K the termlog, (1—2K)
approaches zero, and the upper bound becomes

(< N(% log,(q — 1) — % log, % B. General Case
K K We now consider the general case, where each source
—(1-=—=—)log, (1 - —)) (4) communicates one aff messages. The only difference from
N a N . . ; . .
(q—1) the single-bit-message case is that, instead of allocading
~ 2K log, N + 2K log, 5K (5) single column of the matri¥1 to sourcei, we allocate to itA

columns that span a subspadg sourcei can use any sub-
where2K log, (4-1) is a constant term. Hence, the behavigsubspace withiril; as a codeword. For simplicity, we only
of the bound determined by the terfilog, N. A similar consider the case where sourceises each of thg® — 1
argument can be made for the lower bound. one-dimensional subspaces withila to communicate one of
Figure 2 plots the exact values of these bounds from (3) as = ¢® — 1 different messages. In this particular case, the
a function of N, for K = 2 and K = 20. We can see that code results in each active source generating a single rvecto
the vector length resulting from our code is a fraction of theof length ¢. In principle, however, we can also use multi-
network sizeN that goes to zero as the ratibﬁ(;—*l = % dimensional subspaces as codewords—for instance, any code
goes to zero; we conclude that our code is scalable, in tesign method from [10], using; as our original space.
sense that the vector length does not increase propotional Each active source now generates one vector of lefAgth
to the network size, but, instead, more slowly, as a functiavhich is a linear combination of at mogt columns of the
of the maximum number of combined packets. Again, it imatrix H. Since at mosK vectors can get combined, the sink
easy to see that this code length is optimal: indeed, otlserwiwill receive vectors that are linear combinations of at most
we would be able to construct codes with the required erréfA columns ofH. Thus, provided the minimum distance of
correcting capabilities and smaller length. the code is greater th&¥ A +1, two received vectors will be
Figure 3 illustrates the benefits of joint identity-messagequal if and only if the set of active users and their messages
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ey _|_..._|_7T(N),f[ = #1) _|_...+7]—(N),
are the same, so our code is identifiable. As before, given (a) A R
the total number of sources equals we can never have a d(mg,7s) < d(ng,II) + d(mg,II)
combination of more thaw A columns ofH, leading to the by N o R N
second upper limit in the required minimum distance. <> d(@70) 4 d(mp, 0 <> i+t
i=1 i=1

where (a) follows from the triangle inequality and (b) foll®

from Lemma 1. For another codeword, # 75 in C we have
Our code construction can be naturally extended to provid®C) < d(ng,ny) < d(7g,7r) + d(7R, 7).

forward error correction. Such an approach is well matclbed €Combining these two inequalities we can write

the cases where feedback cannot be readily used or senisors fa N

(an_d could not retransmlt_ anyway). To agh|ev_e this, we ”ee%(m,wg) > D(C) —d(rs,mr) > D(C) — [t + Z” '

to introduce redundancy into the transmitted informatioy, =

separating the subspaces chosen as codewords by a ce%{ain . . ,

“distance.” We define the minimum distance of the codeboci_ " tN€ inequality (8) holds, thed(wz, ms) > d(rr, 7s)

C,; as the closest two subspaces from this codebook can d a m|n.|murr.1_d|stance decoder VYOUI(.j selegt Because
More formally i} is an identifiable code, the receiver is able to decompose

C. Error Resilience

mr uniquely and find the original messages. [ ]
D(C) = min d(ma, m3), (6) Lemma 1:Supposer;, ¢ = 1,...,N, are subspaces of
T MpECi:TaiTo some vector spac®’. Assumer; C m; for i = 1,..., N.
whered(m,,, 73) was defined in (1). Define the union subspac&hen we have
codeC as N
cé{ﬁ<1>+...+w<m|Wmechi:L.._’N}. ) d(W1+"'+WN;ﬁ1+"'+ﬁN)S;d(ﬁi,ﬁi)-

The following theorem relates the minimum distance of
code C to the error and erasure correction capability of |\ THEORETICAL PERFORMANCE COMPARISON
codebooks(C;} under minimum distance decoding.

Theorem 1:Assume an identifiable codg;} is used for
transmission over the network. Let?) € C;, i = 1,..., N,
be transmitted andx be received. Assume at mastvectors
get erased from sourceand at most corrupted vectors are
injected in the network. Then, if

We now compute theoretical performance bounds for the
case of error-free communicatioie., if we assume that each
packet transmitted by a node is successfully received by its
parent (without any retransmissions). As performanceiosgtr
we consider the average and maximum codeword used by the
communication protocols we compare. We assume that we

N are provided with a no-cost character that can signal the end
2 <t + Zri) < D(C), (8 ofa string, hence, we can use non-prefix-free variabletteng
i=1 packets without paying any additional performance cost.
a minimum distance decoder allows the receiver to recoer th We compare three communication protocols: AQgrega-

sent subspaces for each source. tion, as defined in Section II-C; (iilCoding as defined in
Proof: Definers = 7() 4 - -+7) and#® = &, (V)  Section III; and (iii)Optimal which is defined as follows. Each
fori = 1,...,N, where&.(w) is an erasure operator thatnode that acts as a relay maps each possible tuple aggregate

erases randomly from at mostr dimensions. Then forg = A to a binary string, such that the average length of the
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Fig. 4. Average and maximal number of bits for aggregation, coding and ttimalpscheme, for a sensor network withi = 128 source
nodes, as a function of the maximum numb€rof sources combined in each aggregate.

used codewords is minimal. This allows arbitrary compiexit where in this casé(K) is defined as:
operations at network nodes, as well as variable-lengtingod
(K) _ (K) < ol(K)+1_ _ (K) _
We here provide the calculations for the average cost (co&e— 1T <2 1= UK) = POg? (T + 1)1 L
word Iength) for the above three cases; the calculationghfor For coding, we can app|y the same formula as above using
maximum cost are very similar. In all three cases, the goalds different /(K) value. By using the bounds described in

to design a codebook that allows each relay to transmit Bction I1I-B when using field size and K < N/2, we have
observed tuple aggregate to the next hop towards the sink. \Wehis case that

assume that we have no a-priori topological informatios, KA KA

the coding scheme should support transmission of all plessib log, (Z Ni) > 1(k) > log, (Z Ni) :
=0 =0

N{logy(M+1)]

tuple aggregates from each relay. We thus compute the averag

value for a uniform distribution over all, since any tuple .

aggregated can be observed. Recall from Section II-C that Where Ni = ; ). Note that whenk > N/2 the

tuple aggregatet is the set of tuples that are observed by ngth of the short codes i¥'[log, (M + 1)]. _ .

relay and correspond to a set of sourdés). Figure 4 shows the performance of the aggregation, coding,
Given afixed setof sourcesI(A), the number of possible 21d optimal protocols, in terms of maximum and average

tuple aggregates 87!/l Thus, given afixed number of codeword length, for a fixed number of nod®s= 128, as a

sources|I(A)|, we can build a number of tuple aggregate@mcnon of the maximum numbek™ of sources combined in a

equal to(u(jim)MlI(A)" The total number of possible tup|etuple aggregate. We observe tha}t coding performs better tha
aggregates is therefore: aggregatpn gnd close to the optlmal protocol for small eslu
of M, while its performance deteriorates for larger values of
NN . N M and small values of{. The plots also depict with a bold
> (F)ar =+
=0

line the performance of coding when we allow all possible
source combinations.€., when K = N). This performance
If at most K < N sources are contained in each tupléeterioration is due to the fact that codes are constraiaed t
aglg(regate, each relay must support the transmissi@i’of =  employ fixed-length packets and simple operations at nétwor
Sieo ()M different tuple aggregates. nodes. If higher complexity is allowed, we can opt for optima
The performance of aggregation is in this case: codes that significantly outperform aggregation at allmesg.
SE (MM i ([logy(N)] + [logy(M)]) We note that, ag( increases, the performance of aggregation

AVGEEE(N, M, K) = T is significantly worse than the performance of coding.

V. SIMULATIONS

We implemented the aggregation protocol from Section
[I-B and the joint identity-message coding protocol (welwil

The performance of the optimal scheme is:

TiThi- 2 4+ (@) - (209 1)
T(K)

AVGRE™ (N, M, K) =

bits
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Fig. 5. Aggregation and coding performance as a function of network sizenwali nodes in the network are active sources. The top graphs
are computed by taking into account only the data byites, the bytes that carry the identities and messages of the active souhees. T
bottom graphs take into account both the bytes that carry data and thosarttyaprotocol headers. Both aggregation and coding idéur
bytes of header overhead per packet. This includes MAC and CTRetsead

call it the “coding protocol” for brevity) from Section Illsa number, because it is consistent with reports from deployed
TinyOs [11] modules and compared their performance usisgnsor networks [8]. We should note that this number makes
the TOSSIM simulator [2]. We now describe our testing setugense, given that sensor networks are designed to be energy-

and results. efficient, hence it is reasonable for nodes to be placed close
enough to avoid multiple retransmissions in the common.case
A. Setup We rely on the Collection Tree Protocol [8] for creating

We simulate a fixed network of MICAz sensors [12] Ioca’teand malptalnlngCi a sg'annlng trr]ee rdoot(:‘q attthe S";lk' Inl both
in a parking structure, where the sensors are placed on assq gregation and coding, each node fres 1o send only one

grid with the sink located on the upper left corner. We plac%aCket in each round,e., receive data from all its children,

each node & meters from its closest neighbors (this choice i%omb'f‘e ther_n Into one pe_lcket, and send that to its parers. Thi
achieved in the following way: In each round, each node

justified below). Wi he channel f kil
justified below). We use the channel parameters for a par Ireqcords the number of its childrene. the number of nodes

structure reported in [13]. )
Our simulated network operates in rounds. In each rountaat sent data to it. In the next round, the node sends a packet

some or all of the nodes in the network act as active sourcg% its parent_ as soon as it has recglved one packet from each
i.e, communicate their identity and Bbit message to the re¢orded child, or a timer has expired. It is possible that th
I node receives a packetfter it has already sent one packet to

sink. We do not experiment with more thas6 nodes, because . N h “delaved Kets” . diatelv fonedrd
we found that connecting more nodes to a single sink cau {sparent, .SUC, clayed packets: are Immedialely foneer
the receiver’s parent.

congestion and packet loss around the sink (no matter w At
protocol we use to send data to the sink). We place each node &tmeters from its closest neighbors,
We use the default CSMA based MAC layer included iRecause this setting allows more th#% of the transmitted
TinyOs. We rely on standard MAC-layer acknowledgment@ackets to reach the sinke., even though we use MAC-layer
and retransmissions for error protectiar,, we do not use our retransmissions and CTP to keep our network connected in
coding-based error correction from Section I1I-C. We allaw the face of channel changes, if we place our sensors more
maximum payload of 20 bytes and a maximum number & than8 meters from one another, at lea$s of the transmitted
retransmissions per packet (the default value of the MA@#a Packets fail to reach the sink, no matter what protocol we use
implementation that comes with TinyOs), although, in picst  (€ven if we use plain CTP without aggregation or coding).
we rarely observe more thahretransmissions. The channel We compare aggregation and coding in terms of two met-
conditions and network congestion in our simulations agsurics: (i) “Average transmissions” is the total number of dxyt
that each packet has to be retransmitted on averdgémes transmitted by all nodes during the experiment, divided by
to successfully reach the transmitter’s parent. We chose tthe number of nodes and the number of rounds. This metric
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Fig. 6. Aggregation and coding performance as a function of network sizen@% of the nodes in the network are active sources. The
graphs are computed by taking into account only data bytspytes that carry the identities and messages of the active sources.

shows how the two protocols compare in terms of total energransmissions and significantly fewer busiest-node tragism
spent by all nodes, where we expect coding to do wors®ns than aggregation. For instance, in(8-node network,
than aggregation. (ii) “Busiest-node transmissions” stittal aggregation causes the average node to transmit atibut
number of bytes transmitted by the node that transmits thgtes of data per round and the busiest node to transmit about
most bytes during the experiment, divided by the number ®00 data bytes per round; coding causes the average node to
rounds. This metric shows how the two protocols compare fransmit about 5 bytes of data per round and the busiest node
terms of energy spent by the busiest node, where we exptctransmit aboutl0 bytes of data per round.
coding to do (significantly) better than aggregation. The effect of subsequent packets on coding performance is
We break down each result in three non-overlapping elmsignificant. Of course, this is because, in our implemtgma
ments: (i) “First packets” consist of the first packet sent byach node waits to receive from as many children as possible
each node to its parent during each round. (ii) “Subsequdygfore sending to its parent. However, the point of doing
packets” consist of the packets sent by each node after #re actual TinyOs implementation and TOSSIM experiments
node has already sent one packet to its parent in the curremas precisely to show that, in a fixed, realistic network, it
round. These may include the delayed packets mentioniedfeasible, in most rounds, for the nodes to estimate the
above and/or packets due to fragmentatiom, created when number of their children, hence, it is also feasible to pcadiy
a node has more data to send to its parent than can fiteliminate delayed packets.
a single packet. (iii) “Retransmissions” refer to MAC-laye We observe that, when we have4 or more nodes and
retransmissions. we use aggregation, the busiest node incurs a relativede lar
We consider subsequent packets separately, because thewber of subsequent packets and retransmissions. This is
can have a significant performance impact on coding, whereagplained as follows. When we use aggregation, the busiest
they do not affect aggregation. To understand why, consiider node is a neighbor of the sink that acts as a relay to a large
network of Figure 1 and suppose it runs the coding protocalumber of other nodes. When we have more théf nodes,
i.e,, each of thes leaf nodes sends abit vector to nodeB, the busiest node receives, in each round, more data than can
which XCRs all vectors and sends the resultigpit vector to fit into a single packet, hence must send subsequent packets
the sink. Now suppose that nodg sends out its vectaafter to its parent (the sink). The large number of retransmission
B has already sent one vector to the sink; as a redulbas is due to the fact that the busiest node has to send relatively
to forward Sg’s vector to the sink as is, which means that large packets, which are susceptible to transmission<error
now sends a total o x 8 bits of data to the sink (twice as Figure 6 shows the average and busiest-node transmissions
it would send if there were no delayed vectors). In contragts a function of network size, when on)% of the nodes
if the same network runs the aggregation protocol, each iofthe network are active sources. This is a “bad” scenatio fo
the 8 leaf nodes sends 4bit {identity, messagetuple to B, coding, as there are relatively few active sources, henes e
which forwards each tuple to the sink. S8,sends8 x 4 bits the busiest node incurs a relatively low load, which meaas th
of data to the sink, independently from whether it manages tteere is not much room for improvement through codiggy,
combine all tuples into a single packet or not. in a 256-node network, where onlg4 of the nodes are active
So, we expect subsequent packets to reduce, to some extemiiyces, aggregation causes the average node to transmit ab
the advantage of coding over aggregation in terms of busie3tytes of data per round and the busiest node to transmit about
node transmissions. The question is by how much, and this7isbytes of data per round; coding causes the average node to
what we study with our experiments. transmit abou bytes of data per round and the busiest node
to transmit abou0 bytes of data per round.
B. Results
Figure 5 shows the average and busiest-node transmissions VI. RELATED WORK

as a function of network size, when all nodes in the network Recently, techniques inspired from coding and network
are active sources. As expected, coding results in morageercoding have been successfully used to harness the bromgcast
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